

Тест на мутации cobas[®] PIK3CA Mutation Test

Для диагностики in vitro

cobas® PIK3CA Mutation Test

24 Tests

P/N: 07003986190

При работе с фиксированными в формалине и залитыми в парафин образцами ткани (FFPET) для пробоподготовки используют набор для подготовки образцов ДНК **cobas**® DNA Sample Preparation Kit (M/N 05985536190).

СОДЕРЖАНИЕ

Назначение

Описание теста

	Введение	4
	Процедуры, лежащие в основе теста	5
	Эталонные последовательности	6
	Пробоподготовка	6
	ПЦР-амплификация	6
	Выбор мишени	6
	Амплификация мишени	6
	Автоматизированная детекция мутаций в режиме реального времени	7
	Избирательная амплификация	7
Pe	агенты и материалы	
	Реагенты, предоставляемые для теста на мутации cobas ® PIK3CA Mutation Test, 24 теста (P/N: 07003986190)	8
	Хранение реагентов и правила работы с ними	9
	Необходимые дополнительные материалы	9
	Необходимое оборудование и программное обеспечение, не включенное в поставку	9
Μe	еры предосторожности и правила работы	
	Меры предосторожности	10
	Надлежащая лабораторная практика	10
	Контаминация	10
	Целостность	11
	Утилизация	11
	Разлив жидкости и очистка	11
	Сбор, транспортировка и хранение образцов	12
	Сбор образцов	12
	Транспортировка, хранение и обеспечение стабильности образцов	12
	Срок хранения и стабильность обработанных образцов	12
Пр	ооцедура тестирования	
	Постановка теста	13
	Инструкция по работе с набором	13
	Контроль всей процедуры	14
	Амплификация и детекция	15
	Подготовка реакции	17
	Подготовка планшета	18

Запуск ПЦР	19
Результаты	
Интерпретация результатов	20
Повторный анализ образцов, результаты которых признаны невалидными	21
Контроль качества и валидности результатов	21
Мутантный контроль	21
Отрицательный контроль	21
Ограничения процедуры	21
Доклинические испытания теста	
Основные характеристики набора	23
Аналитическая чувствительность (предел измерения холостой пробы)	23
Предел обнаружения при использовании смешанных фиксированных в парафин образцов ткани (FFPET)	
Детекция редких генотипов с помощью плазмид	25
Воспроизводимость	25
Корреляция с эталонным методом	25
Перекрестная реактивность	29
Оценка потенциально интерферирующих веществ	29
Клинические испытания теста	
Воспроизводимость в клинических условиях — исследование	30
Сигнальные сообщения для результатов	
Объяснение сигнальных сообщений для результатов	32
Дополнительная информация	
Основные характеристики теста	34
Условные обозначения	35
Техническая поддержка	36
Производитель	36
Товарные знаки и патенты	36
Авторское право	36
Литература	37
Редакция документа	38

Назначение

Тест на мутации **cobas**® PIK3CA Mutation Test представляет собой тест для диагностики методом полимеразной цепной реакции (ПЦР) в реальном времени, предназначенный для качественного обнаружения и идентификации 17 мутаций в экзонах 2, 5, 8, 10 и 21 гена каталитической субъединицы альфа фосфоннозитид-3-киназы (РІК3CA) в ДНК, полученной из фиксированных в формалине и залитых в парафин образцов ткани (FFPET). Тест на мутации **cobas**® PIK3CA Mutation Test представляет собой тест для диагностики методом ПЦР в реальном времени и предназначен для использования в системе **cobas**® 4800 с целью выявления опухолей, несущих данные мутации, у пациентов с метастатическим раком молочной железы.

Описание теста

Введение

Сигнальный путь фосфоинозитид-3-киназы (PI3K) — это ключевой регулятор многих особенностей поведения нормальных клеток, включая особенности роста, выживаемости, подвижности и пролиферации ¹⁻³. Активация и дисрегуляция сигнального пути PI3K являются причиной широкого спектра онкологических заболеваний человека⁴.При образовании злокачественных опухолей активация сигнального пути происходит посредством рецепторных тирозинкиназ (RTK), например, человеческих рецепторов эпидермального фактора роста типа 2 (HER-2) или рецепторов эпидермального фактора роста (EGFR). Ферменты PI3K, Akt и mTOR являются 3 основными компонентами сигнального пути PI3K/Akt/mTOR ⁵. Активация сигнального пути PI3K приводит к конверсии фосфатидилинозитол (4,5)-дифосфата (PIP2) в фосфатидилинозитол (3,4,5)-трифосфат (PIP3), важный вторичный мессенджер, стимулирующий большое количество нижестоящих элементов сигнальных путей, включая Akt и mTOR. Активация сигнального пути PI3K/Akt/mTOR влияет на прохождение различных клеточных процессов, включая рост, пролиферацию и выживание клетки ⁶.

Среди онкогенов, выявленных в злокачественных опухолях у человека, PIK3CA обладает одним из наиболее высоких процентов мутации. Кроме того, большинство мутаций зарегистрировано в нескольких горячих точках белка (кодоны 1047 [40 %], 545 [25 %] и 542 [13 %]) ⁷. В основном большинство мутаций обнаруживается в экзонах 10 и 21 сигнального пути PIK3CA. Однако активирующие мутации также были обнаружены в экзонах 2, 5 и 8. Согласно информации в базе данных *COSMIC*, среди пациентов с опухолями всех типов мутации гена PIK3CA были обнаружены в 12 % случаев. У пациентов с раком молочной железы (РМЖ) мутации гена PIK3CA были обнаружены в 26 % случаев. Чаще мутации гена PIK3CA обнаруживались при гормон-рецептор-положительном (~40 %) и HER-2-положительном (~25 %) раке молочной железы^{8, 9}.

Среди женщин рак молочной железы является наиболее часто диагностируемым видом рака. Также он является лидирующей причиной смерти женщин от рака. В 2017 году случаи рака молочной железы составили 25 % от общего числа случаев рака и 15 % от числа смертей от рака у женщин по всему миру ¹⁰. По оценкам экспертов, около половины случаев рака молочной железы и 60 % смертей зарегистрированы в экономически развитых странах. В целом это заболевание широко распространено в странах Западной и Северной Европы, Австралии и Новой Зеландии, а также Северной Америки. Факторы, влияющие на частоту возникновения заболевания в разных странах, сводятся к различиям репродуктивных и гормональных факторов, а также доступности детекции на ранних стадиях ¹¹. Для борьбы с высокой заболеваемостью раком молочной железы в целом и высоким уровнем смертности от рака молочной железы требуются передовые методы лечения. Для проведения таргетной терапии, нацеленной на сигнальный путь РІКЗСА, необходима информация о статусе мутации гена РІКЗСА.

07004010001-02RU

Мутации, обнаруживаемые тестом на мутации **cobas**[®] PIK3CA Mutation Test (тест **cobas** PIK3CA) перечислены в Табл. 1.

Табл. 1. Мутации, обнаруживаемые тестом cobas® PIK3CA

Номер экзона гена РІКЗСА по текущей нуме- рации	Номер экзона гена РІКЗСА по преды- дущей нуме- рации *	Мутация гена РІКЗСА	Последо- ватель- ность нуклеи- новой кислоты РІКЗСА	Номенклатура белков HGVS **	Номенклатура нуклеотидов HGVS **	Иденти- фикатор COSMIC ¹²
2	1	R88Q	263G>A	NM_006218.2:p.(Arg88Gln)	NM_006218.2:c.263G>A	746
5	4	N345K	1035T>A	NM_006218.2:p.(Asn345Lys)	NM_006218.2:c.1035T>A	754
8	7	C420R	1258T>C	NM_006218.2:p.(Cys420Arg)	NM_006218.2:c.1258T>C	757
10	9	E542K	1624G>A	NM_006218.2:p.(Glu542Lys)	NM_006218.2:c.1624G>A	760
10	9	E545A	1634A>C	NM_006218.2:p.(Glu545Ala)	NM_006218.2:c.1634A>C	12458
10	9	E545D	1635G>T	NM_006218.2:p.(Glu545Asp)	NM_006218.2:c.1635G>T	765
10	9	E545G	1634A>G	NM_006218.2:p.(Glu545Gly)	NM_006218.2:c.1634A>G	764
10	9	E545K 1633G>A		NM_006218.2:p.(Glu545Lys)	NM_006218.2:c.1633G>A	763
10	9	Q546E	1636C>G	NM_006218.2:p.(Gln546Glu)	NM_006218.2:c.1636C>G	6147
10	9	Q546K	1636C>A	NM_006218.2:p.(Gln546Lys)	NM_006218.2:c.1636C>A	766
10	9	Q546L	1637A>T	NM_006218.2:p.(Glu546Leu)	NM_006218.2:c.1637A>T	25041
10	9	Q546R	1637A>G	NM_006218.2:p.(Gln546Arg)	NM_006218.2:c.1637A>G	12459
21	20	H1047L	3140A>T	NM_006218.2:p.(His1047Leu)	NM_006218.2:c.3140A>T	776
21	20	H1047R	3140A>G	NM_006218.2:p.(His1047Arg)	NM_006218.2:c.3140A>G	775
21	20	H1047Y	3139C>T	NM_006218.2:p.(His1047Tyr)	NM_006218.2:c.3139C>T	774
21	20	G1049R	3145G>C	NM_006218.2:p.(Gly1049Arg)	NM_006218.2:c.3145G>C	12597
21	20	M1043I	3129G>T	NM_006218.2:p.(Met1043IIe)	NM_006218.2:c.3129G>T	773

^{*} Предыдущая нумерация экзона гена РІКЗСА исключала первый нетранслируемый экзон

Процедуры, лежащие в основе теста

Тест **cobas** PIK3CA основан на двух основных процессах: (1) ручной пробоподготовке для получения геномной ДНК из образцов ткани, фиксированных в формалине и залитых в парафин (FFPET), и (2) ПЦР-амплификации и детекции ДНК-мишени с помощью пар комплиментарных праймеров и зондов олигонуклеотидов, меченных флуоресцентными красителями. Тест предназначен для обнаружения R88Q в экзоне 2, N345K в экзоне 5, C420R в экзоне 8, E542K, E545X (E545A, E545D *, E545G и E545K), Q546X (Q546E, Q546K, Q546L и Q546R) в экзоне 10 и М1043I **, H1047X (H1047L, H1047R и H1047Y) и G1049R в экзоне 21. Детекция мутаций производится с помощью ПЦР анализа с использованием анализатора **cobas z** 480. Мутантный и отрицательный контроли включены в каждую постановку теста и подтверждают валидность постановки.

07004010001-02RU

^{**} HGVS — Общество изучения вариативности генома человека (Human Genome Variation Society)

^{*} При замене аминокислоты E545D тест определяет только мутацию по типу нуклеотидной замены с.1635G>T.

^{**} При замене аминокислоты M1043I тест определяет только мутацию по типу нуклеотидной замены с.3129G>T.

Эталонные последовательности

Подробную информацию об эталонной последовательности гена PIK3CA см. в следующем источнике ¹³:

PIK3CA: LRG_310t1

Пробоподготовка

Обработка образцов ткани, фиксированных в формалине и залитых в парафин (FFPET), и выделение геномной ДНК производится вручную стандартным способом, основанным на связывании нуклеиновой кислоты со стекловолокном, с помощью набора для пробоподготовки **cobas**® DNA Sample Preparation Kit. Депарафинизированный срез образца ткани, фиксированного в формалине и залитого в парафин (FFPET), толщиной 5 мкм лизируют путем инкубации при повышенной температуре с протеазой и хаотропным буфером для лизиса/ связывания, который высвобождает нуклеиновые кислоты и защищает высвободившуюся геномную ДНК от ДНКаз. Затем к лизируемой смеси добавляют изопропанол, после чего центрифугируют через колонку со стекловолоконным фильтром-вкладышем. Во время центрифугирования геномная ДНК связывается с поверхностью стекловолоконного фильтра. Несвязавшиеся вещества, например соли, белки и другие клеточные примеси, удаляются путем центрифугирования. Адсорбированные нуклеиновые кислоты промывают и затем элюируют водным раствором. Количество геномной ДНК определяется спектрофотометрически и доводится до фиксированной концентрации для добавления к смеси для амплификации/детекции. ДНК-мишень затем амплифицируется и обнаруживается на анализаторе **cobas** z 480 с помощью реагентов для амплификации и детекции, предоставленными в наборе для тестирования **cobas** PIK3CA.

ПЦР-амплификация

Выбор мишени

В тесте **cobas** PIK3CA используется пул праймеров, которые специфичны для определенных последовательностей пар нуклеотидов длиной от 85 до 155 пар нуклеотидов в экзонах 2, 5, 8, 10 и 21 гена PIK3CA. Дополнительная пара праймеров нацелена на консервативную область из 167 пар нуклеотидов в экзоне 4 гена PIK3CA, чтобы обеспечить полный текущий контроль за пригодностью образца, выделением и амплификацией. Амплифицируются только участки гена PIK3CA между праймерами, а не весь ген PIK3CA.

Амплификация мишени

Для амплификации мишени используется ДНК-полимераза Z05-AS1 бактерий видов Thermus. Сначала реакционная смесь для ПЦР нагревается для денатурации геномной ДНК, чтобы открылись сайты посадки праймеров. При охлаждении смеси прямой и обратный праймеры гибридизуются с последовательностями ДНК-мишени. ДНК-полимераза Z05-AS1 в присутствии иона двухвалентного металла и избытка dNTP удлиняет каждый связавшийся праймер, таким образом синтезируя вторую цепь ДНК. Это завершает первый цикл ПЦР, образуя копию двухцепочной ДНК, которая включает целевые области пар нуклеотидов гена РІКЗСА. Этот процесс повторяется заданное число циклов, и в каждом цикле количество копий ампликона ДНК удваивается.

Автоматизированная детекция мутаций в режиме реального времени

Тест **cobas** PIK3CA использует технологию ПЦР в реальном времени. Каждый мишень-специфичный олигонуклеотидный зонд в реакции помечен флуоресцентным красителем, служащим репортером, и молекулой гасителя, которая поглощает (гасит) флуоресцентное излучение репортерного красителя внутри интактного зонда. Во время каждого цикла амплификации зонд, комплиментарный одноцепочечной последовательности ДНК в ампликоне, связывается и затем расщепляется Z05-AS1 ДНК-полимеразой, обладающей 5'—3'-нуклеазной активностью. Как только репортерный краситель отделяется от гасителя вследствие нуклеазной активности, появляется измеримая флюоресценция с характерной длиной волны при возбуждении репортерного красителя соответствующим спектром света. Чтобы обнаружить последовательности гена PIK3CA, на которые нацелен тест, используется четыре различных репортерных красителя. Амплификация последовательности-мишени гена PIK3CA обнаруживается независимо в трех реакциях путем измерения флюоресценции при четырех характерных длинах волн в определенных оптических каналах.

Избирательная амплификация

Избирательная амплификация нуклеиновой кислоты-мишени из образца в тест-системе **cobas** PIK3CA обеспечивается ферментом AmpErase (урацил-N-гликозилазой) и трифосфатом дезоксиуридина (dUTP) ¹⁴. Фермент AmpErase распознает и катализирует разрушение цепей ДНК, содержащих дезоксиуридин, но не ДНК, содержащей тимидин. Дезоксиуридин отсутствует в природной ДНК, но всегда присутствует в ампликонах, поскольку dUTP совместно с трифосфатом диокситимидина (в качестве одного из нуклеотидных трифосфатов) входит в состав реагентов мастермикса Master Mix. Поэтому дезоксиуридин содержится только в ампликонах. Дезоксиуридин делает контаминирующие ампликоны восприимчивыми к разрушению ферментом AmpErase до начала амплификации ДНК-мишени. Фермент AmpErase, входящий в состав реагентов мастермикса Master Mix, катализирует расщепление содержащей дезоксиуридин ДНК по дезоксиуридиновому основанию, открывая дезоксирибозную цепь в позиции С1. При нагревании на первом этапе термоциклирования в щелочной среде ДНК-цепь ампликона разрывается в позиции дезоксиуридина и, следовательно, ДНК больше не подлежит амплификации. Фермент AmpErase неактивен при температуре выше 55 °C, т. е. на этапах термоциклирования, и, следовательно, не разрушает нужный ампликон.

07004010001-02RU

Реагенты и материалы

Все неоткрытые реагенты и контроли должны храниться согласно рекомендациям в Табл. «Хранение реагентов и правила работы с ними».

Реагенты, предоставляемые для теста на мутации cobas® PIK3CA Mutation Test, 24 теста (P/N: 07003986190)

Реагенты	Состав реагента	Количество в наборе	Маркировка безопасности и предупреждения
РІКЗСА ММХ-1 (РІКЗСА мастермикс Master Mix 1; крышка с белой кнопкой) (P/N 07003897001)	Трис буфер, хлорид кальция, глицерин, ЭДТА, неионный детергент, диметилсульфоксид, 0,09 % азид натрия, дезоксинуклеотидтрифосфаты (dNTP), ДНК-полимераза, фермент AmpErase (урацил-N-гликозилаза) (бактериальный), аптамер, праймеры гена PIK3CA, меченные флуоресцентным красителем зонды гена PIK3CA	2 × 0,48 мл	Нет
РІКЗСА ММХ-2 (РІКЗСА мастермикс Master Mix 2; крышка с золотистой кнопкой) (Р/N 07003927001)	Трис буфер, хлорид кальция, глицерин, ЭДТА, неионный детергент, диметилсульфоксид, 0,09 % азид натрия, дезоксинуклеотидтрифосфаты (dNTP), ДНК-полимераза, фермент AmpErase (урацил-N-гликозилаза) (бактериальный), аптамер, праймеры гена PIK3CA, меченные флуоресцентным красителем зонды гена PIK3CA	2 × 0,48 мл	Нет
РІКЗСА ММХ-3 (РІКЗСА мастермикс Master Mix 3; крышка с бирюзовой кнопкой) (P/N 07003943001)	Трис буфер, хлорид кальция, глицерин, ЭДТА, неионный детергент, диметилсульфоксид, 0,09 % азид натрия, дезоксинуклеотидтрифосфаты (dNTP), ДНК-полимераза, фермент AmpErase (урацил-N-гликозилаза) (бактериальный), аптамер, праймеры гена PIK3CA, меченные флуоресцентным красителем зонды гена PIK3CA	2 × 0,48 мл	Нет
МGAC (ацетат магния; крышка с желтой кнопкой) (P/N 05854326001)	Ацетат магния, 0,09 % азид натрия	6 × 0,20 мл	Нет
РІКЗСА МС (мутантный контроль РІКЗСА Mutant Control; крышка с красной кнопкой) (P/N 07003960001)	Трис буфер, ЭДТА, Поли-гА РНК (синтетическая), 0,05 % азид натрия, плазмидная ДНК, содержащая последовательности экзонов 2, 5, 8, 10 и 21 гена РІКЗСА, ДНК гена РІКЗСА дикого типа	6 × 0,10 мл	Нет
DNA SD (дилюент для образцов ДНК) (P/N 05854474001)	Трис-НСІ буфер, 0,09 % азид натрия	2 × 3,5 мл	Нет

07004010001-02RU

Хранение реагентов и правила работы с ними

Реагент	Температура хранения	Длительность хранения
Тест на мутации cobas [®] PIK3CA Mutation Tes	* 2–8 °C	После вскрытия эта тест-система стабильна для 4 применений на протяжении 90 дней или до истечения указанного срока годности, если он наступит раньше.

^{*} Мастермиксы PIK3CA MMX-1, PIK3CA MMX-2, PIK3CA MMX-3 и рабочий мастермикс MMX (подготовленный путем добавления MGAC к PIK3CA MMX-1, PIK3CA MMX-2 или PIK3CA MMX-3) следует оберегать от длительного воздействия света. Рабочий MMX необходимо хранить в темноте при температуре 2–8 °C. Подготовленные образцы и контроли следует добавить в течение 1 часа подготовки рабочего мастермикса MMX. Амплификация должна начаться в течение 1 часа с момента добавления подготовленных образцов и контролей в рабочий MMX.

Перед началом работы осмотрите реагенты и убедитесь в отсутствии протекания. При наличии протекания не используйте данный материал для постановки теста.

Необходимые дополнительные материалы

Материалы	P/N
Гипохлорит натрия	Любой поставщик
70 % этанол	Любой поставщик
Микропланшет (AD-планшет) системы cobas ® 4800 и заклеивающая пленка	Roche 05232724001
Аппликатор для заклеивающей пленки системы cobas [®] 4800 (входит в комплект системы cobas [®] 4800)	Roche 04900383001
Дозаторы с регулируемым объемом * (для пипетирования реагентов объемом от 5 до 1000 мкл)	Любой поставщик
Свободные от ДНКаз наконечники для пипеток с аэрозольным барьером или прямым вытеснением	Любой поставщик
Настольная микроцентрифуга * (способная обеспечить 20 000 g)	Любой поставщик
Микроцентрифужные пробирки с защелкивающейся крышкой (1,5 мл, стерильные, свободные от РНКаз/ДНКаз, подходящие для ПЦР)	Любой поставщик
Штативы для микроцентрифужных пробирок	Любой поставщик
Спектрофотометр для измерения концентрации ДНК *	Любой поставщик
Вортекс *	Любой поставщик
Одноразовые перчатки, без талька	Любой поставщик

^{*} Все оборудование должно эксплуатироваться в соответствии с инструкциями производителя.

Необходимое оборудование и программное обеспечение, не включенное в поставку

Необходимое оборудование и программное обеспечение, не включенное в поставку	P/N
Анализатор cobas z 480 и управляющий компьютер	05200881001
Программа cobas ® 4800 System Application Software (Core) 2.2 или более поздняя версия	07565500001
Программа cobas ® PIK3CA P1 Analysis Package Software 1.0 или более поздняя версия	08249628001

За дополнительной информацией о приобретаемых отдельно материалах обратитесь в местное представительство компании Roche.

За дополнительной информацией о приобретаемых отдельно материалах обратитесь в местное представительство компании Roche.

Меры предосторожности и правила работы

Меры предосторожности

Как и при выполнении любых тестов, соблюдение правил надлежащей лабораторной практики является условием качественного выполнения данного теста.

- Только для диагностики *in vitro*.
- Паспорта безопасности материалов (SDS) доступны по запросу в вашем региональном представительстве компании Roche.
- Тест предназначен для использования с образцами ткани, фиксированными в формалине и залитыми в парафин (FFPET). Образцы нужно рассматривать как потенциально инфекционные и соблюдать при работе с ними правила лабораторной безопасности, приведенные в документах Biosafety in Microbiological and Biomedical Laboratories¹⁵ и CLSI Document M29-A4 ¹⁶.
- Рекомендуется использовать стерильные одноразовые пипетки и свободные от ДНКаз наконечники дозаторов.
- Внимательно следуйте рекомендациям и инструкциям для корректного проведения теста. Любое отклонение от инструкции может повлиять на результаты теста.
- О любых серьезных инцидентах, имевших место при работе с данным тестом, сообщайте в местный уполномоченный орган и производителю.

Надлежащая лабораторная практика

- Не пипетируйте ртом.
- Не ешьте, не пейте и не курите в рабочих лабораторных помещениях.
- Тщательно мойте руки после работы с образцами и реагентами набора.
- Работайте со всеми реагентами в средствах для защиты глаз, лабораторном халате и одноразовых перчатках. Избегайте попадания данных материалов в глаза, на кожу или слизистые оболочки. При попадании немедленно промойте большим количеством воды. В противном случае могут возникнуть ожоги. При разлитии реагентов разведите их водой, затем вытрите насухо.
- Тщательно очищайте и дезинфицируйте все рабочие поверхности свежеприготовленным 0,5%-м раствором гипохлорита натрия в дистиллированной или деионизованной воде (разведите бытовую хлорку в соотношении 1:10), затем протирайте их 70%-м этанолом.

Примечание. Коммерческий жидкий бытовой отбеливатель обычно содержит гипохлорит натрия в концентрации 5,25 %. Разведение 1:10 бытового хлорсодержащего моющего средства дает 0,5 % раствор гипохлорита натрия.

Контаминация

- Во избежание контаминации необходимо работать в одноразовых перчатках и менять их при переходе от работы с образцами к работе с реагентами тест-системы **cobas** PIK3CA. Не допускайте контаминации перчаток при работе с образцами.
- Необходимо часто менять перчатки, чтобы снизить риск контаминации.
- Перчатки следует менять, прежде чем покинуть зоны выделения ДНК, или при подозрении на контакт с растворами или образцом.
- Не допускайте микробной контаминации реагентов.

• Перед приготовлением ММХ необходимо тщательно очистить зону амплификации и детекции. Для каждого этапа процедуры должны быть специально выделены запасы реактивов и отдельное оборудование, которые не будут применяться для других процедур или перемещаться из одной зоны в другую. Например, дозаторы и расходные материалы, использующиеся для выделения ДНК, нельзя использовать для приготовления реагентов для амплификации и детекции.

Крайне желательно организовать рабочий процесс в лаборатории таким образом, чтобы все процедуры выполнялись в одном направлении и каждый следующий этап начинался только после завершения предыдущего. Например, выделение ДНК необходимо завершить до начала амплификации и детекции. Выделение ДНК должно осуществляться в зонах, отгороженных от зон амплификации и детекции. Во избежание контаминации рабочей смеси Мастермикс образцами ДНК необходимо тщательно очистить рабочую зону амплификации и детекции до начала приготовления смеси Мастермикс.

Целостность

- Не используйте набор по истечении срока годности.
- Не смешивайте реагенты из разных наборов или лотов.
- Не используйте флаконы с реагентами из разных наборов лотов в ходе одной процедуры.
- Не используйте одноразовые материалы с истекшим сроком годности.
- Все одноразовые материалы предназначены для однократного использования. Не используйте их повторно.
- Все оборудование должно эксплуатироваться в соответствии с инструкциями производителя.

Утилизация

- 1. Реагенты MGAC, PIK3CA MMX-1, PIK3CA MMX-2, PIK3CA MMX-3, PIK3CA MC и DNA SD содержат азид натрия. Азид натрия может вступать в реакцию со свинцом и медью, которые содержатся в трубах канализации, что приводит к образованию взрывоопасных азидов. При сливе отходов, содержащих азид натрия, в лабораторную раковину смывайте их большим количеством холодной воды, чтобы предотвратить накопление азидов.
- 2. Утилизируйте неиспользованные реагенты и отходы в соответствии с государственными, федеральными и региональными правилами.

Разлив жидкости и очистка

- Если разлив произошел в приборе **cobas**[®] 4800, выполните очистку, следуя инструкциям, приведенным в поддержке пользователя системы **cobas**[®] 4800.
- Не используйте раствор гипохлорита натрия (хлорсодержащего моющего средства) для очистки анализатора **cobas z** 480. Очищайте анализатор **cobas z** 480 в соответствии с процедурами, описанными в поддержке пользователя системы **cobas**[®] 4800.
- Дополнительные предупреждения и сведения о мерах предосторожности и процедурах по снижению риска контаминации при работе с анализатором **cobas z** 480 приведены в поддержке пользователя системы **cobas**[®] 4800.

Сбор, транспортировка и хранение образцов

Примечание. Работайте со всеми образцами как с потенциально инфекционными материалами.

Сбор образцов

Образцы РМЖ, фиксированные в формалине и залитые в парафин (FFPET), валидированы для использования с тестом **cobas** PIK3CA.

Транспортировка, хранение и обеспечение стабильности образцов

Фиксированные в формалине и залитые в парафин образцы ткани (FFPET), полученные от пациентов с РМЖ, могут транспортироваться при температуре 15–30 °C. Транспортировка образцов FFPET должна выполняться в соответствии с общегосударственными, федеральными, региональными и местными нормативными требованиями в отношении транспортировки этиологических агентов ¹⁷. Подтверждена стабильность образцов FFPET РМЖ, хранившихся при 15–30 °C до 12 месяцев после сбора. Срезы толщиной пять мкм, фиксированные на предметных стеклах, могут храниться при 15–30 °C до 60 дней.

Фиксированные в формалине и залитые в парафин образцы ткани (FFPET), полученные от пациентов с РМЖ, сохраняют стабильность при следующих условиях:

Образец типа FFPET	Блок FFPET	5-мкм срез FFPET		
Температура хранения образца FFPET	15–30 °C	15–30 °C		
Длительность хранения	До 12 месяцев	До 60 дней		

Срок хранения и стабильность обработанных образцов

Обработанные образцы (выделенная ДНК) сохраняют стабильность при следующих условиях:

Температура хранения выделенной ДНК	–15–25 °C	2–8 °C	15–30 °C
Длительность хранения	До 3 циклов замораживания- оттаивания на протяжении 60 дней	До 14 дней	До 1 дня

Выделенную ДНК необходимо использовать в течение рекомендованного срока хранения или до истечения срока годности набора **cobas**[®] DNA Sample Preparation Kit, который был использован для выделения ДНК, если этот срок наступит раньше.

Процедура тестирования

Постановка теста

Рис. 1. Рабочий процесс использования теста cobas PIK3CA совместно с набором cobas® DNA Sample **Preparation Kit**

#	Этап рабочего процесса
1	Запуск системы
2	Обслуживание прибора
3	Извлечение образцов и реагентов из хранения
4	Депарафинизация образцов
5	Выделение ДНК
6	Элюирование ДНК
7	Создание рабочего задания и распечатка схемы планшета
8	Подготовка реагентов для амплификации
9	Загрузка реагентов для амплификации в лунки АD-планшета
10	Загрузка образца в лунки AD-планшета
11	Запечатывание AD-планшета
12	Загрузка AD-планшета в анализатор cobas z 480
13	Запуск постановки
14	Просмотр результатов
15	С использованием ЛИС: отправка результатов в ЛИС
16	Разгрузка анализатора

Инструкция по работе с набором

Примечание. Для проведения исследований с использованием тест-системы **cobas** PIK3CA пригодны только 5-мкм срезы фиксированных в формалине и залитых в парафин образцов ткани (FFPET), полученные от пациентов с РМЖ, в которых опухолевые ткани занимают по меньшей мере 10 % от общей площади среза. Любой образец менее чем с 10 % опухолевого содержимого должен быть подвергнут макродиссекции после депарафинизации.

Примечание. Подробные инструкции по работе с анализатором **cobas z** 480 приведены в поддержке пользователя системы **cobas**® 4800.

Объем постановки

Одна постановка может включать от 1 до 30 образцов (а также контроли) на 96-луночный АD-планшет. При постановке более чем 24 образцов понадобится использовать несколько наборов тест-системы совая РІКЗСА.

Тест cobas PIK3CA содержит достаточное количество реагентов для 8 постановок по 3 образца (плюс контроли) — максимум 24 образца на набор.

Контроль всей процедуры

При проведении этого теста обязателен отрицательный контроль процедуры (*NEG*). Начиная с этапа выделения ДНК, в каждую постановку вместе с образцами в обязательном порядке включается *NEG*.

Выделение ДНК

ДНК выделяется из образцов ткани, фиксированных в формалине и залитых в парафин (FFPET), РМЖ с использованием набора для пробоподготовки **cobas**[®] DNA Sample Preparation Kit (M/N 05985536190).

Макродиссекция образца

Если образец содержит менее 10 % опухолевых тканей от общей площади среза, в рамках пробоподготовки необходимо провести макродиссекцию образца.

Количественный анализ ДНК

Примечание. Измерение концентрации ДНК необходимо проводить сразу же после процедуры выделения ДНК и до отправки образца на хранение.

Примечание. Хранить исходный образец ДНК следует в соответствии с инструкциями, приведенными в разделе «**Транспортировка, хранение и обеспечение стабильности образцов**».

- 1. Каждую пробирку с исходным образцом ДНК перемешайте на вортексе на протяжении 5 секунд.
- 2. Проведите количественный анализ ДНК с помощью спектрофотометра в соответствии с протоколом производителя. Используйте буфер для элюции DNA Elution Buffer (DNA EB) в качестве холостой пробы для прибора. Необходимо получить среднее значение из двух согласующихся результатов измерений. Если измеренные концентрации ДНК составляют ≥ 20,0 нг/мкл, два измерения должны отличаться друг от друга не более чем на ±10 %. При концентрации ДНК < 20,0 нг/мкл два результата измерений не должны отличаться друг от друга более чем на ±2 нг/мкл. Если результаты двух измерений выходят за пределы ±10 % друг от друга при измеренной концентрации ДНК ≥ 20,0 нг/мкл или разница превышает ±2 нг/мкл при измеренной концентрации ДНК < 20,0 нг/мкл, следует выполнять по 2 дополнительных измерения до тех пор, пока не будут соблюдены указанные требования. Затем следует рассчитать среднее от этих двух новых измерений.</p>

Примечание. Измерение исходной концентрации ДНК во включенном в постановку отрицательном контроле (**NEG**) не требуется.

3. Для выполнения теста **cobas** PIK3CA исходная концентрация ДНК в образцах должна быть ≥ 2 нг/мкл. Для каждого образца выполняется постановка трех циклов амплификации/детекции с использованием 25 мкл исходной ДНК, разведенной до концентрации 2 нг/мкл, (всего 50 нг ДНК) для каждого цикла амплификации/детекции.

Примечание. Для выполнения теста **cobas** PIK3CA каждый исходный образец ДНК должен иметь концентрацию не менее 2 нг/мкл. Если концентрация ДНК в исходном образце составляет < 2 нг/мкл, повторите депарафинизацию, выделение ДНК и количественный анализ ДНК для этого образиа, используя два 5-мкм среза фиксированных в формалине и залитых в парафин образиов ткани (FFPET). Для подготовки образцов, фиксированных на стеклах, после депарафинизации объедините два среза ткани в одной пробирке, погрузите ткань в ДНК лизирующий буфер для ткани (DNA TLB) в сочетании с протеиназой К (PK), а затем выполните выделение ДНК и количественное определение, как описано выше. Для подготовки образцов, не фиксированных на предметных стеклах, объедините два среза в одной пробирке и выполните депарафинизацию. Погрузите ткань в раствор $DNA\ TLB + PK$, а затем выполните выделение ДНК и подсчет ее количества, как описано выше. Если концентрация ДНК в исходном образце попрежнему составляет < 2 нг/мкл, запросите другой фиксированный в формалине и залитый в парафин образец ткани (FFPET) в соответствующей лаборатории.

Амплификация и детекция

Примечание. Во избежание контаминации рабочего ММХ образцами ДНК процедуры амплификации и детекции следует проводить в зоне, отделенной от зоны выделения ДНК. Перед приготовлением ММХ необходимо тщательно очистить зону амплификации и детекции. Для качественной очистки все поверхности, включая штативы и дозаторы, следует тщательно протереть салфеткой, смоченной в 0,5%-ном растворе гипохлорита натрия, а затем — 70%-м этанолом. Коммерческий жидкий бытовой отбеливатель обычно содержит гипохлорит натрия в концентрации 5,25 %. Разведение 1:10 бытового хлорсодержащего моющего средства дает 0,5 % раствор гипохлорита натрия.

Подготовка оборудования

Подробные инструкции для подготовки анализатора cobas z 480 приведены в поддержке пользователя системы cobas® 4800.

Подготовка к проведению исследования

Подробное описание этапов рабочего процесса с тестом cobas PIK3CA приведено в поддержке пользователя системы **cobas**® 4800.

Подготовьте схему планшета с указанием расположения всех образцов и контролей для текущей постановки. Мутантный контроль (МС) вносят в лунки планшета A01–A03. *NEG* вносят в лунки планшета B01–B03. Затем вносят разведенные образцы в 3 столбцах, начиная с ячеек С01-С03 и заканчивая ячейками Н10-Н12, как показано в Табл. 2.

07004010001-02RU

Табл. 2. Схема планшета для теста cobas PIK3CA

Ряд/ столбец	01	02	03	04	05	06	07	08	09	10	11	12
Α	MC	MC	MC	S7	S7	S7	S15	S15	S15	S23	S23	S23
A	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
В	NEG	NEG	NEG	S8	S8	S8	S16	S16	S16	S24	S24	S24
	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
С	S1	S1	S1	S9	S9	S9	S17	S17	S17	S25	S25	S25
	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
D	S2	S2	S2	S10	S10	S10	S18	S18	S18	S26	S26	S26
	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
E	S3	S3	S3	S11	S11	S11	S19	S19	S19	S27	S27	S27
	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
F	S4	S4	S4	S12	S12	S12	S20	S20	S20	S28	S28	S28
Г	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
G	S5	S5	S5	S13	S13	S13	S21	S21	S21	S29	S29	S29
<u> </u>	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3
н	S6	S6	S6	S14	S14	S14	S22	S22	S22	S30	S30	S30
	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3	MMX 1	MMX 2	MMX 3

Условные обозначения: MC — мутантный контроль, NEG — отрицательный контроль; S с номером — идентификатор образца, MMX с номером — мастермикс реагент 1, 2 или 3.

Примечание. Для того чтобы получить валидные результаты, каждый образец необходимо внести в три последовательных столбца в один ряд.

Примечание. Рабочий мастермикс Master Mix 1 вносится в лунки планшета 01, 04, 07 и 10. Рабочий мастермикс Master Mix 2 вносится в лунки планшета 02, 05, 08 и 11. Рабочий мастермикс Master Mix 3 вносится в лунки планшета 03, 06, 09 и 12.

Примечание. В лунки одного планшета может быть внесено не более 30 образцов. Если для внесения всех образцов в один планшет требуется использовать реагенты из нескольких наборов, все эти наборы должны быть из одного лота.

Расчет разведений исходного образца ДНК

Расчет разведений для исходного образца ДНК с концентрацией от 2 до 36 нг/мкл

Примечание. Разведение исходных образцов ДНК необходимо проводить непосредственно перед амплификацией и детекцией.

Примечание. Для каждого образца проводится три цикла амплификации/детекции, что требует 75 мкл общего объема (25 мкл для каждой из трех реакций) исходной ДНК в разведении 2 нг/мкл (всего 150 нг ДНК).

- 1. Для каждого образца рассчитайте необходимый объем (в мкл) исходного образца ДНК:

 Объем исходной ДНК [мкл] = (90 мкл × 2 нг/мкл) ÷ концентрация исходной ДНК [нг/мкл]
- 2. Для каждого образца рассчитайте необходимый объем (в мкл) реагента **DNA SD**:

Объем реагента **DNA SD** (мкл) = 90 мкл – объем исходного образца ДНК (мкл)

Пример:

Концентрация исходной ДНК = 6,5 нг/мкл

- 1. Объем исходной ДНК [мкл] = $(90 \text{ мкл} \times 2 \text{ нг/мкл}) \div 6.5 \text{ нг/мкл} = 27.7 \text{ мкл}$
- 2. Объем реагента **DNA SD** (мкл) = (90 мкл 27,7 мкл) = 62,3 мкл

07004010001-02RU

Расчет разведений для исходного образца ДНК с концентрацией > 36 нг/мкл

- **Примечание.** Разведение исходных образцов ДНК необходимо проводить непосредственно перед амплификацией и детекцией.
- **Примечание.** Для каждого образца проводится три цикла амплификации/детекции, что требует 75 мкл общего объема (25 мкл для каждой из трех реакций) исходной ДНК в разведении 2 нг/мкл (всего 150 нг ДНК).
- 1. Если концентрация ДНК в исходном образце превышает 36 нг/мкл, для расчета объема реагента **DNA SD**, необходимого для приготовления по меньшей мере 90 мкл разведенного исходного образца ДНК, используйте приведенную ниже формулу. Это позволит обеспечить использование по меньшей мере 5 мкл исходного раствора ДНК для каждого образца.
- 2. Для каждого образца рассчитайте объем (в мкл) реагента **DNA SD**, необходимый для разведения 5 мкл исходного раствора ДНК до концентрации 2 нг/мкл:

Необходимый объем **DNA SD** [мкл] = [(5 мкл исходной ДНК \times концентрация исходной ДНК в нг/мкл) \div 2 нг/мкл] – 5 мкл

Пример

Концентрация исходной ДНК = 100 нг/мкл

- 1. Необходимый объем **DNA SD** [мкл] = $((5 \text{ мкл} \times 100 \text{ нг/мкл}) \div 2 \text{ нг/мкл}) 5 \text{ мкл} = 245 \text{ мкл}$
- 2. Используйте рассчитанный объем раствора **DNA SD**, чтобы развести 5 мкл исходного образца ДНК до требуемой концентрации.

Разведение образцов

- 1. Подготовьте необходимое количество микроцентрифужных пробирок с плотно закрывающимися крышками объемом 1,5 мл для разведений ДНК, промаркируйте их в соответствии с маркировкой образцов.
- 2. С помощью дозатора с наконечником с аэрозольным барьером пипетируйте рассчитанные объемы реагента **DNA SD** в пробирки с соответствующей маркировкой. Пипетируйте 45 мкл реагента **DNA SD** в микроцентрифужную пробирку с плотно закрывающейся крышкой, на которую нанесена маркировка **NEG**.
- 3. Перемешайте на вортексе каждый исходный образец ДНК и *NEG* в течение 5–10 секунд.
- 4. С помощью дозатора с наконечником с аэрозольным барьером (новый наконечник для каждого пипетирования) аккуратно пипетируйте рассчитанный объем исходной ДНК в соответствующую пробирку, содержащую **DNA SD**. Пипетируйте 45 мкл *отрицательного контроля* (элюат после выделения) в пробирку с маркировкой **NEG**.
- 5. Закройте пробирки крышками и перемешайте каждую на вортексе в течение 5–10 секунд.
- 6. Смените перчатки.

Подготовка реакции

Подготовка рабочих мастермиксов (ММХ-1, ММХ-2 и ММХ-3)

- **Примечание.** Мастермиксы **PIK3CA MMX-1**, **PIK3CA MMX-2**, **PIK3CA MMX-3** и рабочий мастермикс MMX чувствительны к свету и должны быть защищены от длительного светового воздействия.
- **Примечание.** Из-за вязкости реагентов **PIK3CA** и рабочего мастермикса MMX пипетируйте медленно, чтобы убедиться, что наконечник полностью свободен от смеси.
- **Примечание.** Мастермиксы **PIK3CA MMX-1**, **PIK3CA MMX-2** и **PIK3CA MMX-3** могут быть голубого/ пурпурного ивета. Это не влияет на рабочие характеристики реагента.

Doc. Rev. 2.0 17

07004010001-02RU

Подготовьте три смеси рабочего мастермикса MMX: одну с PIK3CA MMX-1, другую с PIK3CA MMX-2 и третью с PIK3CA MMX-3 в отдельных микроцентрифужных пробирках с защелкивающейся крышкой объемом 1,5 мл.

1. Рассчитайте объем мастермикса PIK3CA MMX-1, или PIK3CA MMX-2, или PIK3CA MMX-3, необходимый для каждого рабочего мастермикса MMX, использующего следующую формулу:

Необходимый объем PIK3CA MMX-1, PIK3CA MMX-2 или PIK3CA MMX-3 = (количество образцов + 2 контроля + 1) \times 20 мкл

2. Рассчитайте объем MGAC, необходимый для каждого рабочего мастермикса ММХ:

Необходимый объем MGAC = (количество образцов + 2 контроля + 1) × 7 мкл

Для определения объема каждого реагента, необходимого для приготовления рабочего ММХ исходя из количества образцов, включенных в постановку, руководствуйтесь Табл. 3.

Табл. 3. Объемы реагентов, необходимые для приготовления рабочих мастермиксов ММХ-1, ММХ-2 и ММХ-3 исходя из количества исследуемых образцов *

Реагент	Объем	1	2	3	4	5	6	7	8	9	10
MMX	20 мкл	80	100	120	140	160	180	200	220	240	260
MGAC	7 мкл	28	35	42	49	56	63	70	77	84	91
-	Общий объем каждого рабочего ММХ (мкл)	108	135	162	189	216	243	270	297	324	351

^{*} Значение параметра «количество образцов» определяется как количество анализируемых образцов + 2 контроля + 1.

- 3. Извлеките нужное количество флаконов мастермиксов **PIK3CA MMX-1**, **PIK3CA MMX-2** или **PIK3CA MMX-3** и **MGAC** из хранилища с температурой 2–8 °C. Перед использованием перемешайте на вортексе каждый реагент в течение 5 секунд и соберите жидкость на дне пробирки. Промаркируйте стерильные микроцентрифужные пробирки для рабочих мастермиксов MMX-1, MMX-2 и MMX-3.
- 4. Внесите рассчитанный объем мастермиксов **PIK3CA MMX-1**, **PIK3CA MMX-2** или **PIK3CA MMX-3** в соответствующие пробирки для рабочего мастермикса MMX.
- 5. Добавьте рассчитанный объем **MGAC** в пробирки для рабочего мастермикса MMX.
- 6. Перемешайте содержимое пробирок на вортексе в течение 3–5 секунд для получения достаточно однородной смеси.

Примечание. Образцы и контроли необходимо внести в лунки AD-планшета в течение 1 часа после приготовления рабочих MMX.

Примечание. Используйте только AD-планшеты и заклеивающую пленку для системы **cobas**[®] 4800.

Подготовка планшета

- 1. Пипетируйте 25 мкл рабочего MMX в каждую реакционную лунку AD-планшета, которая задействована в постановке. Не касайтесь наконечником дозатора планшета за пределами лунки.
 - Внесите рабочий MMX-1 (содержащий **PIK3CA MMX-1**) в лунки колонок 01, 04, 07 и 10 AD-планшета (по мере необходимости).
 - Внесите рабочий ММХ-2 (содержащий **PIK3CA MMX-2**) в лунки колонок 02, 05, 08 и 11 AD-планшета (по мере необходимости).
 - Внесите рабочий ММХ-3 (содержащий **PIK3CA MMX-3**) в лунки колонок 03, 06, 09 и 12 AD-планшета (по мере необходимости).

- 2. Пипетируйте 25 мкл **PIK3CA MC** в лунки **A01**, **A02** и **A03** AD-планшета; хорошо перемешайте пипетированием: с помощью дозатора аспирируйте образец из лунки и выпускайте его обратно не менее двух раз.
- 3. Поменяв наконечник дозатора, пипетируйте по 25 мкл отрицательного контроля *NEG* в лунки **B01**, **B02** и **B03** AD-планшета, перемешайте содержимое лунок с помощью дозатора: наберите содержимое лунки в наконечник и вылейте обратно в лунку не менее двух раз.
- **Примечание.** При каждой постановке обязательным является внесение реагента **PIK3CA MC** в лунки **A01**, **A02** и **A03**, а также отрицательного контроля **NEG** в лунки **B01**, **B02** и **B03**. В противном случае анализатор **cobas z** 480 расценит эту постановку как невалидную.
- **Примечание.** Во избежание перекрестной контаминации образцов, а также внешней контаминации реакционных пробирок для ПЦР, меняйте перчатки каждый раз, когда в этом возникает необходимость.
- 4. Пипетируйте по 25 мкл первого образца ДНК в лунки **C01**, **C02** и **C03** AD-планшета, используя новый наконечник для дозатора при наборе каждой новой дозы разведенного раствора образца ДНК и внесении образца ДНК в каждую новую лунку. Перемешайте содержимое лунок с помощью дозатора: наберите содержимое лунки в наконечник и вылейте обратно в лунку не менее двух раз. Повторите эту процедуру для каждого разведенного образца ДНК, соблюдая схему, приведенную на Табл. 2, до тех пор, пока все разведенные образцы ДНК не будут внесены в лунки AD-планшета. Убедитесь в том, что жидкость собралась на дне лунок.
- 5. Покройте AD-планшет заклеивающей пленкой (входит в комплект поставки вместе с планшетами). Для того чтобы надежно приклеить заклеивающую пленку к AD-планшету, воспользуйтесь аппликатором.
- 6. Прежде чем запустить ПЦР, убедитесь, что вся жидкость находится на дне лунок.

Примечание. Амплификация и детекция должны начаться не позднее чем через 1 час после внесения первого разведенного образца ДНК в рабочий ММХ.

Запуск ПЦР

Подробную информацию об этапах рабочего процесса тестирования PIK3CA см. в поддержке пользователя системы **cobas**® 4800. При появлении всплывающего окна «Select test» (Выберите тестирование), выберите тип постановки «PCR only» (только ПЦР), затем выберите вариант «PIK3CA P1» и нажмите кнопку «ОК».

Результаты

Интерпретация результатов

Примечание. Валидность всех постановок и образцов проверяется программой **cobas**® 4800.

Примечание. Валидная постановка исследования может содержать как валидные, так и невалидные результаты исследования образцов.

В Табл. 4 приведена интерпретация результатов, полученных для образцов в случае валидной постановки.

Табл. 4. Интерпретация результатов теста cobas PIK3CA

Результат теста	Результат определения мутации	Интерпретация
Mutation Detected	R88Q	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	N345K	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	C420R	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	E542K	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	E545X (E545A, E545D *, E545G или E545K)	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	Q546X (Q546E, Q546K, Q546L или Q546R)	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	M1043I **	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	H1047X (H1047L, H1047R или H1047Y)	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	G1049R	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
Mutation Detected	(Может присутствовать несколько мутаций)	Мутация обнаружена в указанном участке-мишени гена РІКЗСА.
No Mutation Detected	Нет	Ни одной мутации не обнаружено в участках-мишенях гена РІКЗСА.
Invalid	Нет	Результат исследования образца невалидный. При получении невалидных результатов повторите исследование соответствующих образцов, соблюдая инструкции, приведенные в разделе «Повторное исследование образцов после получения невалидных результатов» ниже.
Failed	Нет	Невалидная постановка по причине сбоя оборудования или программного обеспечения. Обратитесь в местное представительство компании Roche за технической поддержкой.

^{*} При замене аминокислоты E545D тест определяет только мутацию по типу нуклеотидной замены c.1635G>T.

Примечание. Результат «No Mutation Detected» (Ни одной мутации не обнаружено) не исключает наличия мутаций в мишеневых участках гена PIK3CA, поскольку результат исследования зависит от доли мутантных последовательностей, достаточной целостности образца, отсутствия ингибиторов и достаточного количества искомой ДНК.

^{**} При замене аминокислоты M1043I тест определяет только мутацию по типу нуклеотидной замены с.3129G>T.

Повторный анализ образцов, результаты которых признаны невалидными

- 1. Повторите разведение исходного образца ДНК, результат которого признан невалидным, начиная с этапа «Расчет разведений исходного образца ДНК» и «Разведение образца» в разделе **Амплификация и детекция**.
- 2. После разведения исходного раствора ДНК до концентрации 2 нг/мкл по методике, описанной выше в разделе «Разведение образца», приступите к этапам процедуры «Подготовка рабочих ММХ (ММХ-1, ММХ-2 и ММХ-3)» и далее к остальным этапам процедур амплификации и детекции.

Примечание. Если после повторного анализа данного образца снова получен невалидный результат или объем исходного образца ДНК был недостаточен для приготовления еще одного разведения согласно этапу А процедуры, описанной в разделе «Повторный анализ образцов, результаты которых признаны невалидными», повторите анализ данного образца с самого начала, начиная с этапов депарафинизации и выделения ДНК, используя новый 5-мкм срез фиксированного в формалине и залитого в парафин образца ткани (FFPET).

Контроль качества и валидности результатов

Каждая постановка, предполагающая анализ до 30 образцов, должна включать мутантный контроль для тестсистемы **cobas** PIK3CA Test **PIK3CA MC** (лунки **A01**, **A02** и **A03**) и **NEG** (лунки **B01**, **B02** и **B03**) для рабочих мастермиксов MMX-1, MMX-2 и MMX-3. Результат постановки считается валидным, если результаты для контролей **PIK3CA MC** и **NEG** признаны валидными. Если для любого из контролей (**PIK3CA MC** или **NEG**) получен невалидный результат, вся постановка признается невалидной и анализ проводится повторно. Подготовьте свежее разведение ранее выделенного образца исходной ДНК для настройки нового AD-планшета с контролями для амплификации и детекции.

Мутантный контроль

Результат анализа для мутантного контроля **PIK3CA MC** должен быть «Valid» (Валидный). Если результаты **PIK3CA MC** последовательно невалидны, обратитесь в местное представительство компании Roche за технической поддержкой.

Отрицательный контроль

Результат анализа для отрицательного контроля NEG должен быть «Valid» (Валидный). Если результат для отрицательного контроля NEG стабильно невалиден, обратитесь в местное представительство компании Roche за технической поддержкой.

Ограничения процедуры

- 1. Тест проводится только для указанных типов образцов. Тест **cobas** PIK3CA был проверен на образцах ткани, фиксированных в формалине и залитых в парафин (FFPET), рака молочной железы.
- 2. Тест **cobas** PIK3CA может использоваться только вместе с набором для пробоподготовки **cobas**® DNA Sample Preparation Kit (Roche M/N: 05985536190).
- 3. Детекция мутаций зависит от числа копий в образце, и на него может повлиять целостность образца, количество выделенной ДНК и присутствие интерферирующих веществ.

- 4. Надежность результатов теста зависит от соблюдения правил фиксации, транспортировки, хранения и обработки образцов. Соблюдайте процедуры, описанные в руководстве по работе с набором для пробоподготовки **cobas**[®] DNA Sample Preparation Kit (M/N 05985536190), в данной инструкции по работе с тест-системой и в поддержке пользователя системы **cobas**[®] 4800.
- 5. Воздействие других возможных переменных, таких как переменные фиксации образца, не оценивалось.
- 6. Добавление фермента AmpErase в рабочие мастермиксы Master Mix тест-системы **cobas** PIK3CA позволяет выполнять избирательную амплификацию ДНК-мишени. в то же время для предотвращения контаминации реагентов требуется соблюдать стандарты надлежащей лабораторной практики, а также в точности следовать процедурам, описанным в данном руководстве по работе с тест-системой.
- 7. К работе с данным продуктом допускается только персонал, обученный проведению ПЦР и работе с системой **cohas**[®] 4800.
- 8. Только анализатор **cobas z** 480 был валидирован для использования с данным продуктом. С этим продуктом нельзя использовать другие термоциклеры с оптической детекцией в реальном времени.
- 9. Вследствие естественных различий между технологиями пользователю рекомендуется, прежде чем заменить одну технологию на другую, провести корреляционные испытания для этих методов, чтобы оценить возможные различия между технологиями.
- 10. Присутствие ингибиторов ПЦР может привести к ложноотрицательным или невалидным результатам.
- 11. В редких случаях мутации в пределах геномных участков ДНК гена РІК3СА, с которыми взаимодействуют праймеры или зонды теста **cobas** РІК3СА, могут приводить к ошибочным результатам теста.
- 12. В редких случаях тест **cobas** PIK3CA показывает ограниченную перекрестную реактивность (результаты «Mutation Detected» [Мутация обнаружена]) для мутаций, фланкирующих мутации-мишени в экзонах 10 и 21 (например, E545K с высоким процентом мутации может дать результат мутации E545X, Q546X или H1047X может дать результат мутации H1047X или G1049R).
- 13. Тест **cobas** PIK3CA валидирован для использования с 50 нг ДНК в каждой реакционной лунке. Вносить ДНК в количестве ниже 50 нг на реакционную лунку не рекомендуется.
- 14. Тест **cobas** PIK3CA является качественным тестом. Она не обеспечивает количественного измерения и не позволяет определить процентное содержание мутантного гена.
- 15. Фиксированные в формалине и залитые в парафин образцы ткани (FFPET), полученные от пациентов с РМЖ, содержащие разрушенную ДНК, могут повлиять на способность теста обнаруживать мутации гена РІКЗСА.
- 16. Образцы, для которых по итогам анализа был получен результат «No Mutation Detected» (Ни одной мутации не обнаружено), могут содержать мутации гена PIK3CA, которые не определяются данной тест-системой.
- 17. В редких случаях образцы, содержащие рядом двойные мутации на одной и той же цепи ДНК, могут оказывать интерферирующее влияние на детекцию одной из двух мутаций: например, P539R (CCT > CGT) может интерферировать с детекцией E542K, а Y343Y (TAC > TAT) может интерферировать с детекцией N345K.

Доклинические испытания теста

Примечание. Описания исследований, приведенные ниже, содержат кумулятивные данные, полученные с использованием тест-систем **cobas** PIK3CA.

В доклинических исследованиях, описания которых приведены ниже, процентное содержание опухолевых тканей оценивали при патоморфологическом исследовании. Отбор образцов для последующих исследований осуществлялся путем двунаправленного секвенирования по Сэнгеру и секвенирования нового поколения (NGS). Процентное содержание мутаций в фиксированных в формалине и залитых в парафин образцах тканей (FFPET), полученных от пациентов с РМЖ, определялось методом NGS.

Основные характеристики набора

Аналитическая чувствительность (предел измерения холостой пробы)

Для оценки эффективности теста **cobas** PIK3CA, а также для подтверждения того факта, что образцы дикого типа не генерируют сигнал, который мог бы быть интерпретирован, как присутствие мутантного гена в низкой концентрации, было проведено исследование с фиксированными в формалине и залитыми в парафин образцами ткани (FFPET), полученными от пациентов с РМЖ с геном РІК3CA исходного немутантного типа. Предел измерения холостой пробы определяли непараметрическим методом в соответствии с рекомендациями CLSI guideline EP17-A2 ¹⁸ для образцов, полученных от пациентов с геном РІК3CA исходного немутантного типа. Предел измерения холостой пробы равнялся нулю для всех видов мутаций.

Предел обнаружения при использовании смешанных фиксированных в формалине и залитых в парафин образцов ткани (FFPET)

ДНК, выделенные из 33 образцов ткани, фиксированных в формалине и залитых в парафин (FFPET), рака молочной железы с мутацией в гене РІКЗСА, были смешаны с ДНК, выделенной из 25 образцов FFPET рака молочной железы исходного немутантного типа РІКЗСА, чтобы получить 42 уникальные смеси ДНК с уровнем мутаций-мишеней 10,0 %, 7,5 %, 5,0 %, 2,5 % и 1,0 %, определенным методом NGS. Были подготовлены разведения каждого образца смеси ДНК и поставлен тест суммарно 21 повтора каждого уровня мутации с использованием трех лотов набора теста **cobas** РІКЗСА (n = 21/образец панели). Предел обнаружения для каждого образца определяли по наименьшему процентному содержанию мутации, давшему результат «Миtation Detected» (Мутация обнаружена) для мутации-мишени гена РІКЗСА не менее чем в 95 % случаев (см. Табл. 5).

Табл. 5. Предел обнаружения для теста cobas PIK3CA с использованием смесей ДНК образцов FFPET

Экзон гена РІКЗСА	Мутация гена РІКЗСА	Последова- тельность нуклеиновой кислоты РІКЗСА	Иденти- фикатор COSMIC ¹²	Образец	Процентное содержание мутации в образце панели, необходимое для получения результата «Mutation Detected» (Мутация обнаружена) с частотой ≥ 95 % при внесении 50 нг ДНК в реакционную лунку (N = 21 повтора)
2	R88Q	263 G>A	746	Образец 1	2,2 %
2	R88Q	263 G>A	746	Образец 2	1,3 %
2	R88Q	263 G>A	746	Образец 3	1,1 %
5	N345K	1035 T>A	754	Образец 4	2,2 %
5	N345K	1035 T>A	754	Образец 5	1,9 %
5	N345K	1035 T>A	754	Образец 6	1,3 %
8	C420R	1258 T>C	757	Образец 7	1,7 %
8	C420R	1258 T>C	757	Образец 8	1,9 %
8	C420R	1258 T>C	757	Образец 9	1,6 %
10	E542K	1624 G>A	760	Образец 10	1,1 %
10	E542K	1624 G>A	760	Образец 11	1,2 %
10	E542K	1624 G>A	760	Образец 12	1,1 %
10	E545A	1634 A>C	12458	Образец 13	2,8 %
10	E545A	1634 A>C	12458	Образец 14	0,9 %
10	E545A	1634 A>C	12458	Образец 15	1,6 %
10	E545G	1634 A>G	764	Образец 16	1,8 %
10	E545G	1634 A>G	764	Образец 17	1,2 %
10	E545G	1634 A>G	764	Образец 18	1,6 %
10	E545K	1633 G>A	763	Образец 19	3,3 %
10	E545K	1633 G>A	763	Образец 20	1,5 %
10	E545K	1633 G>A	763	Образец 21	1,8 %
10	Q546E	1636 C>G	6147	Образец 22	3,5 %
10	Q546E	1636 C>G	6147	Образец 23	1,6 %
10	Q546E	1636 C>G	6147	Образец 24	2,5 %
10	Q546K	1636 C>A	766	Образец 25	3,4 %
10	Q546K	1636 C>A	766	Образец 26	2,3 %
10	Q546K	1636 C>A	766	Образец 27	2,7 %
10	Q546R	1637 A>G	12459	Образец 28	1,5 %
10	Q546R	1637 A>G	12459	Образец 29	3,2 %
10	Q546R	1637 A>G	12459	Образец 30	1,3 %
21	H1047L	3140 A>T	776	Образец 31	2,8 %
21	H1047L	3140 A>T	776	Образец 32	1,8 %
21	H1047L	3140 A>T	776	Образец 33	3,3 %
21	H1047R	3140 A>G	775	Образец 34	2,8 %
21	H1047R	3140 A>G	775	Образец 35	1,5 %
21	H1047R	3140 A>G	775	Образец 36	1,0 %
21	H1047Y	3139 C>T	774	Образец 37	3,5 %
21	H1047Y	3139 C>T	774	Образец 38	2,2 %
21	H1047Y	3139 C>T	774	Образец 39	3,4 %
21	G1049R	3145 G>C	12597	Образец 40	1,0 %
21	G1049R	3145 G>C	12597	Образец 41	0,7 %
21	G1049R	3145 G>C	12597	Образец 42	1,0 %

Тест **cobas** PIK3CA позволял обнаружить мутации-мишени в гене PIK3CA с процентом мутаций от 0.7~% до 3.5~% при вводе 50~нг/ПЦР ДНК.

Детекция редких генотипов с помощью плазмид

Для трех мутаций гена PIK3CA, перечисленных в Табл. 6, конструкция ДНК-плазмиды была смешана с ДНК исходного немутантного типа, чтобы подготовить образцы ДНК с низким процентом мутации. Для каждой плазмидной смеси было протестировано всего не менее 20 повторов с 50 нг внесенной ДНК с использованием не менее одного лота набора теста **cobas** PIK3CA. В случае биномиального распределения верхние 95%-ные доверительные интервалы для каждой плазмидной смеси показаны в Табл. 6.

Табл. 6. Мутации, обнаруженные тестом cobas PIK3CA с использованием смесей мутантных плазмидных ДНК

Экзон гена PIK3CA	Мутация гена РІКЗСА	Последова- тельность нуклеиновой кислоты PIK3CA	Иденти- фикатор COSMIC ¹²	Фактический процент мутации	95%-ный нижний доверительный интервал в случае биномиального распределения (N ≥ 20)	95%-ный верхний доверительный интервал в случае биномиального распределения (N ≥ 20)
10	E545D	1635 G>T	765	1,2 %	62 %	97 %
10	Q546L	1637 A>T	25041	2,1 %	83 %	100 %
21	M1043I	3129 G>T	773	2,6 %	83 %	100 %

Воспроизводимость

Воспроизводимость теста **cobas** PIK3CA оценивалась с использованием десяти образцов ткани, фиксированных в формалине и залитых в парафин (FFPET), включая: два образца с геном исходного немутантного типа и восемь образцов с мутациями (по одной на образец) E542K, N345K, E545K, C420R, G1049R, Q546K, R88Q, и H1047R. Эти образцы были проанализированы в двух повторах двумя операторами с использованием двух различных лотов наборов реагентов и двух анализаторов **cobas z** 480 на протяжении восьми дней. Всего было оценено 32 повтора каждого образца. Частота правильного определения с помощью теста **cobas** PIK3CA составила 99,7 % (319/320).

Корреляция с эталонным методом

Сравнительное тестирование 206 образцов ткани, фиксированных в формалине и залитых в парафин (FFPET), рака молочной железы с использованием каждого из двух лотов теста **cobas** PIK3CA и секвенирования по Сэнгеру проводилось с целью определения процента согласованности положительных и отрицательных результатов, а также общего процента согласованности между методами. Если между тестом **cobas** PIK3CA и секвенированием по Сэнгеру возникало противоречие, для его разрешения образцы тестировали с использованием метода NGS.

Результаты теста cobas PIK3CA и секвенирования по Сэнгеру

Сравнение 205 валидных результатов секвенирования по Сэнгеру и теста **cobas** PIK3CA приведено в Табл. 7.

Табл. 7. Анализ согласованности теста cobas PIK3CA и секвенирования по Сэнгеру

	По Сэнгеру, MD	По Сэнгеру, NMD	Всего
cobas PIK3CA, MD	95*	7	102
cobas PIK3CA, NMD	0	103	103
cobas PIK3CA, Невалидный	0	1	1
Всего	95	111	206

Согласование положительных результатов = 100 % (95 % ДИ = 96,1-100 %)

Согласование отрицательных результатов = 93,6 % (95 % ДИ = 87,4-96,9 %)

Общее согласование = 96,6 % (95 % ДИ = 93,1-98,3 %)

MD — Mutation Detected (Мутация обнаружена)

NMD — No Mutation Detected (Ни одной мутации не обнаружено)

Сравнение между тестом **cobas** PIK3CA и секвенированием по Сэнгеру определило девять мишеней для каждого образца. Всего 1845 вызовов было сделано на основании результатов 205 валидных образцов. Табл. 8 демонстрирует сравнение теста **cobas** PIK3CA и секвенирования по Сэнгеру по каждой распознаваемой мутации лота 1.

Табл. 8. Сравнение теста cobas® PIK3CA и секвенирования по Сэнгеру по каждой распознаваемой мутации лота 1

	По Сэнгеру, R88Q	По Сэнгеру, N345K	По Сэнгеру, C420R	По Сэнгеру, E542K	По Сэнгеру, E545X	По Сэнгеру, Q546X	По Сэнгеру, M1043I	По Сэнгеру, H1047X	По Сэнгеру, G1049R	По Сэнгеру, NMD	Всего
cobas PIK3CA, R88Q	1	-	-	-	-	-	-	-	-	-	1
cobas PIK3CA, N345K	-	7	-	-	-	-	-	-	-	-	7
cobas PIK3CA, C420R	-	-	3	-	-	-	-	-	-	-	3
cobas PIK3CA, E542K	-	-	-	14	-	-	-	-	-	2	16
cobas PIK3CA, E545X	-	-	-	-	17	-	-	-	-	2	19
cobas PIK3CA, Q546X	-	-	-	-	-	8	-	-	-	1*	9
cobas PIK3CA, M1043I	-	-	-	-	-	-	-	-	-	-	0
cobas PIK3CA, H1047X	-	-	-	-	-	-	-	42	-	7*	49
cobas PIK3CA, G1049R	-	-	-	-	-	-	-	-	3	-	3
cobas PIK3CA, NMD	-	-	-	-	-	-	-	-	-	1738	1738
cobas PIK3CA, Невалидный	-	-	-	-	-	-	-	-	-	9	9
Всего	1	7	3	14	17	8	0	42	3	1759	1854

^{*} Результаты тестирования образцов лота 2 были аналогичны результатам лота 1, за исключением того, что в лоте 2 образцов с противоречивыми результатами было на два меньше. См. образец 8 и образец 9 в Табл. 9.

^{*}Пять образцов лота 1 и три образца лота 2 дали результат MD методом секвенирования по Сэнгеру и тестом **cobas** PIK3CA, но секвенирование по Сэнгеру обнаружило первую и не выявило второй мутации (см. Табл. 9).

27

Анализ противоречий методом NGS

Результаты исследования семи образцов с помощью секвенирования по Сэнгеру и теста **cobas** PIK3CA не согласовались. Дополнительные пять образцов согласовывались по одной мутации, однако тест **cobas** PIK3CA обнаружил еще по одной мутации в каждом образце. Эти двенадцать образцов были проанализированы методом NGS, результаты показаны в Табл. 9. Пересмотренный анализ согласованности проводился на основании результатов, полученных методом NGS. В этом анализе результаты, полученные методом NGS, которые согласовывались с результатом теста **cobas** PIK3CA, признавались согласующимися.

Табл. 9. Разрешение противоречий результатов методом NGS

Образец	По Сэнгеру	Tecт cobas PIK3CA (лот 1)	Разрешение методом NGS (лот 1 **)	Tecт cobas PIK3CA (лот 2)	Разрешение методом NGS (лот 2 **)	
Образец 1	NMD	H1047X	H1047R (3,4 % мутаций)	H1047X	H1047R (2,5 % мутаций)	
Образец 2	NMD	E542K	E542K (4,8 % мутаций)	E542K	E542K (3,4 % мутаций)	
Образец 3	NMD	H1047X	H1047R (2,0 % мутаций)	H1047X	H1047R (2,8 % мутаций)	
Образец 4	NMD	E542K	E542K (10,1 % мутаций)	E542K	E542K (8,3 % мутаций)	
Образец 5	NMD	E545X	E545K (4,3 % мутаций)	E545X	E545K (2,2 % мутаций)	
Образец 6	NMD	H1047X	H1047R (5,1 % мутаций) H1047Y (1,1 % мутаций)	H1047X	H1047R (4,1 % мутаций)	
Образец 7	NMD	E545X	E545K (17,2 % мутаций)	E545X	E545K (25,6 % мутаций)	
Образец 8 *	H1047L	H1047X; Q546X	Q546K (2,2 % мутаций)	H1047X	Нет	
Образец 9 *	Q546R	H1047X; Q546X	H1047R (0,6 % мутаций) H1047Y (0,4 % мутаций)	Q546X	Нет	
Образец 10	C420R	H1047X; C420R	H1047R (0,9 % мутаций)	H1047X; C420R	H1047R (1,1 % мутаций)	
Образец 11	E545K	H1047X; E545X	H1047R (1,7 % мутаций)	H1047X; E545X	H1047R (1,8 % мутаций)	
Образец 12	Q546E	H1047X; Q546X	H1047R (6,7 % мутаций)	H1047X; Q546X	H1047R (5,4 % мутаций)	

^{*} Образцы 8 и 9 имели противоречивые результаты между лотом 1 и лотом 2. Результаты лота 2 согласовывались с секвенированием по Сэнгеру, поэтому разрешающее тестирование не требовалось.

Примечание. Результаты теста **cobas** PIK3CA для образцов 8–12 обнаружили те же самые мутации в гене PIK3CA, что и секвенирование по Сэнгеру, однако методом NGS были обнаружены и подтверждены дополнительные мутации.

Противоречащие результаты после сравнения теста **cobas** PIK3CA и секвенирования по Сэнгеру разрешались методом NGS. Общая согласованность теста **cobas** PIK3CA и секвенирования составила 100 % по всем мутациям-мишеням для каждого лота, как показано в Табл. 10.

^{**} Секвенирование нового поколения (NGS) для разрешения противоречий результатов применялось только для экзонов, для которых были получены противоречивые результаты.

Табл. 10. Анализ согласованности теста cobas PIK3CA и секвенирования по Сэнгеру с разрешением противоречий методом секвенирования нового поколения (Сэнгер + NGS)

	Сэнгер + NGS, MD	Сэнгер + NGS, NMD	Всего
cobas PIK3CA, MD	102	0	102
cobas PIK3CA, NMD	0	103	103
cobas PIK3CA, Невалидный	0	1	1
Всего	102	104	206

Согласование положительных результатов = 100 % (95 % ДИ = 96,4-100 %)

Согласование отрицательных результатов = 100 % (95 % ДИ = 96,4-100 %)

Общее согласование = 100 % (95 % ДИ = 98,2-100 %)

Табл. 11 демонстрирует сравнение теста **cobas** PIK3CA и секвенирования по Сэнгеру с разрешением противоречий методом NGS по каждой распознаваемой мутации лота 1.

Табл. 11. Сравнение теста cobas PIK3CA и секвенирования по Сэнгеру по каждой распознаваемой мутации с разрешением противоречий методом секвенирования нового поколения (Сэнгер + NGS)

	Сэнгер+ NGS, R88Q	Сэнгер+ NGS, N345K	Сэнгер+ NGS, C420R	Сэнгер+ NGS, E542K	Сэнгер+ NGS, E545X	Сэнгер+ NGS, Q546X	Сэнгер+ NGS, M1043I	Сэнгер+ NGS, H1047X	Сэнгер+ NGS, G1049R	Сэнгер+ NGS, NMD	Всего
cobas PIK3CA, R88Q	1	-	-	-	-	-	-	-	-	-	1
cobas PIK3CA, N345K	-	7	-	-	-	-	-	-	-	-	7
cobas PIK3CA, C420R	-	-	3	-	-	-	-	-	-	-	3
cobas PIK3CA, E542K	-	-	-	16	-	-	-	-	-	-	16
cobas PIK3CA, E545X	-	-	-	-	19	-	-	-	-	-	19
cobas PIK3CA, Q546X	-	-	-	-	-	9*	-	-	-	-	9
cobas PIK3CA, M1043I	-	-	-	-	-	-	-	-	-	-	0
cobas PIK3CA, H1047X	-	1	1	-	-	1	1	49*	1	-	49
cobas PIK3CA, G1049R	-	1	1	-	-	1	1	1	3	-	3
cobas PIK3CA, NMD	-	-	-	-	-	-	-	-	1	1738 *	1738
cobas PIK3CA, Невалидный	-	-	-	-	-	-	-	-	-	9	9
Всего	1	7	3	16	19	9	0	49	3	1747	1854

^{*} Результаты тестирования образцов лота 2 были аналогичны результатам лота 1, за исключением того, что тестом соbas PIK3CA и методом секвенирования по Сэнгеру в сочетании с методом секвенирования нового поколения (Сэнгер + NGS) было обнаружено на две мутации меньше. См. образец 8 и образец 9 в Табл. 9. Для лота 2 было получено на два результата NMD больше и, соответственно, на одну мутацию Q546X и на одну мутацию H1047X меньше.

07004010001-02RU

Перекрестная реактивность

Следующие нецелевые мутации протестированы на перекрестную реактивность с использованием плазмид при ориентировочно 50%-ном уровне внесения плазмид геномную ДНК: М1043IA, М1043V, М1043T, G1049S, G1049A, E542V, E542Q, E545DC, E545V, E545Q, Q546P, Q546H и псевдоген PIK3CA. Эти нецелевые мутации не обладали перекрестной реактивностью (или не интерферировали) с тестом **cobas** PIK3CA при добавлении к образцам, содержащим последовательности исходного немутантного типа и мутантные последовательности гена PIK3CA.

Оценка потенциально интерферирующих веществ

Эндогенные

Триглицериды (\leq 37 мМ, рекомендованная высокая концентрация CLSI ¹⁹) и гемоглобин (\leq 2 мг/мл, рекомендованная высокая концентрация CLSI ¹⁹) показали отсутствие интерферирующего влияния на тест **cobas** PIK3CA при добавлении вещества к образцам во время процедуры пробоподготовки. Образцы, содержащие до 90 % жировой ткани, показали отсутствие интерферирующего влияния на тест **cobas** PIK3CA.

Экзогенные

Следующие лекарственные вещества были протестированы на интерференцию: летрозол (107,25 нг/мл), анастрозол (91,20 нг/мл), капецитабин (11,97 нг/мл), тамоксифен (111,0 нг/мл), экземестан (66,9 нг/мл), эверолимус (47,1 нг/мл), паклитаксел (10 950,0 нг/мл), доцетаксел (16,50 мкг/мл), циклофосфамид (603 мкг/мл), доксорубицин (1998,4 нг/мл) и фулвестрант (84 нг/мл).

Было показано, что эти лекарственные вещества интерферируют с тестом **cobas** PIK3CA при добавлении к образцам во время процедуры пробоподготовки.

Некротизированные ткани

Исследования показали, что на результаты теста **cobas** PIK3CA не влияло содержание в фиксированных в формалине и залитых в парафин образцов ткани (FFPET), полученных от пациентов с РМЖ, некротизированных тканей в количестве до 55 % для образцов с мутантным геном РIK3CA и до 70 % для образцов с геном РIK3CA исходного немутантного типа.

Клинические испытания теста

Воспроизводимость в клинических условиях — исследование

Для оценки воспроизводимости результатов, полученных с использованием тест-системы cobas PIK3CA, было проведено исследование, в котором сравнивались результаты, полученные в 3 лабораториях (1 внутренней и 2 внешних, по 2 оператора в каждой лаборатории) с задействованием 3 лотов реагентов на протяжении 5 непоследовательных дней. В качестве образцов для проведения исследования использовали панель с 21 выделенным из фиксированных в формалине и залитых в парафин FFPET-образцов РМЖ с генами исходного немутантного и мутантного типов. Образцы были получены из частных хранилищ тканей. В состав этой панели входили мутации в экзонах 2, 5, 8, 10 и 21, подтвержденные методом секвенирования ДНК. Суммарно в рамках 90 валидных постановок было проведено 3780 тестов на 21 образцах панели. Результаты всех этих тестов также были валидными. При анализе 180 валидных тестов образцов панели с геномом исходного немутантного типа результат «No Mutation Detected» (Ни одной мутации не обнаружено) был получен во всех случаях, что дает в конечном итоге 100 % согласованность для данного показателя. Для 19 из 20 образцов панели согласованность составляла 100 %. Для образца панели «Мутация Е545К в экзоне 10 — LoD» показатель согласованности составлял 99,4 % (результат Mutation Detected [Мутация обнаружена] был получен для 179 из 180 тестов). Совокупные результаты согласованности для тест-системы приведены в Табл. 12. Для всех образцов панели мутаций коэффициент вариации (КВ) составлял < 2 %. Общий КВ для внешнего контроля составлял < 1.9 %. KB% между различными лотами составлял < 0.4 %, а в пределах лота -< 1,9 %.

07004010001-02RU

Табл. 12. Общая оценка согласованности для образцов панели в исследовании воспроизводимости

Образец панели	Количество валидных тестов	Согласованность N	% согласованности (95 % ДИ) ^а
Исходный немутантный тип	180	180	100 (98,0, 100,0)
Мутация N345К в экзоне 5 — LoD	180	180	100 (98,0, 100,0)
Мутация E542K в экзоне 10 — LoD	180	180	100 (98,0, 100,0)
Мутация E545K в экзоне 10 — LoD	180	180	100 (98,0, 100,0)
Мутация H1047L в экзоне 21 — LoD	180	180	100 (98,0, 100,0)
Мутация G1049R в экзоне 21 — LoD	180	180	100 (98,0, 100,0)
Мутация N345K в экзоне 5 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация E542K в экзоне 10 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация E545K в экзоне 10 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация H1047L в экзоне 21 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация G1049R в экзоне 21 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация R88Q в экзоне 2 — LoD	180	180	100 (98,0, 100,0)
Мутация C420R в экзоне 8 — LoD	180	180	100 (98,0, 100,0)
Мутация E545A в экзоне 10 — LoD	180	179	99,4 (96,9, 100,0)
Мутация Q546K в экзоне 10 — LoD	180	180	100 (98,0, 100,0)
Мутация H1047R в экзоне 21 — LoD	180	180	100 (98,0, 100,0)
Мутация R88Q в экзоне 2 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация C420R в экзоне 8 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация E545A в экзоне 10 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация Q546К в экзоне 10 — 2 × LoD	180	180	100 (98,0, 100,0)
Мутация H1047R в экзоне 21 — 2 × LoD	180	180	100 (98,0, 100,0)

Примечание. Результаты считали удовлетворительными по согласованности, если для образца панели, содержащего мутантный ген, были получены валидные результаты «Mutation Detected» (Мутация обнаружена), или если для образца панели с геном исходного немутантного типа были получены валидные результаты «No Mutation Detected» (Ни одной мутации не обнаружено).

В итоге тест **cobas** PIK3CA, предназначенный для идентификации мутаций в экзонах 2, 5, 8, 10 и 21 гена PIK3CA в ДНК, полученной из тканей рака молочной железы человека, фиксированных формалином и залитых в парафин, показал высокую воспроизводимость. Для всех мутаций, оцениваемых в данном исследовании, показатель согласованности составил > 99 %.

^а 95 % ДИ = 95 % доверительный интервал.

Сигнальные сообщения для результатов

Объяснение сигнальных сообщений для результатов

Причина появления сигнального сообщения указана в коде этого сообщения, а значения кодов приведены в Табл. 13.

Табл. 13. Причина появления

Код сигнального сообщения начинается с	Причина появления	Пример
M*	Совокупность причин или другие причины	M6
R	Интерпретация результата	R500
Z*	Анализатор	Z1

См. поддержку пользователя системы **cobas**® 4800.

В Табл. 14 приведены все сигнальные сообщения для результатов системы, которые имеют отношение к пользователю системы.

Табл. 14. Список сигнальных сообщений для результатов

Код сигнального сообщения	Описание	Рекомендуемое действие
R500-R511	Мутантный контроль не обнаружен	Повторите постановку. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на ошибку алгоритма определения изгиба. Это возможно в случае атипичной картины флуоресценции или сильного фонового сигнала.
R512-R523	Мутантный контроль не обнаружен	Повторите постановку. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на получение отрицательного результата мутантного контроля (т. е. в одну или несколько лунок, возможно, не была внесена ДНК мутантного контроля).
R524-R535	Мутантный контроль вне допустимого диапазона	Повторите постановку. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают, что наблюдаемое значение изгиба мутантного контроля было ниже установленного порогового значения (т. е. изгиб слишком низкий). Это возможно в случае контаминации ДНК.
R536-R547	Мутантный контроль вне допустимого диапазона	Повторите постановку. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают, что наблюдаемое значение изгиба мутантного контроля было выше установленного порогового значения (т. е. изгиб слишком высокий). Возможные причины: 1. Неправильная подготовка рабочего мастермикса Master Mix; 2. Ошибка пипетирования на этапе добавления рабочего
		мастермикса Master Mix в лунку AD-планшета; 3. Ошибка пипетирования на этапе добавления мутантного контроля в лунку AD-планшета.

07004010001-02RU

Код сигнального сообщения	Описание	Рекомендуемое действие
R548-R559	Отрицательный контроль не обнаружен	Повторите постановку. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на ошибку алгоритма определения изгиба. Это возможно в случае атипичной картины флуоресценции или сильного фонового сигнала.
R560-R571	Отрицательный контроль вне допустимого диапазона	Повторите постановку. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на получение положительного результата для отрицательного контроля (т. е. произошла контаминация).
R572-R583	Повторите анализ образца. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений ук ошибку алгоритма определения изгиба. Это возможн атипичной картины флуоресценции или сильного фосигнала.	
R584-R586, R588-R590, R592-R594, R596-R604	Результат выходит за пределы диапазона	Повторите анализ образца. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на один из вариантов: 1. Атипично низкое значение изгиба, полученное для исследуемого образца; 2. Атипичное взаимоотношение между значениями изгиба для мутантного контроля и внутреннего контроля, полученными для исследуемого образца.
R587, R591, R595	Внутренний контроль вне допустимого диапазона	Повторите анализ образца. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на атипично низкое значение изгиба внутреннего контроля, полученное для исследуемого образца. Данная ошибка может возникать, если в реакционную смесь для ПЦР загружено избыточное количество концентрированной геномной ДНК.
R605-R610	Внутренний контроль не обнаружен	Повторите анализ образца. См. раздел «Процедура тестирования». Эти коды сигнальных сообщений указывают на ошибку валидности результата внутреннего контроля для исследуемого образца. Отсутствие валидного результата для внутреннего контроля может указывать на следующие обстоятельства:
		 Низкое качество геномной ДНК в образце Неправильная обработка образца Присутствие в образце ингибитора ПЦР Наличие редких мутаций в участках геномной ДНК, с которыми связываются праймеры и/или зонды внутреннего контроля Образец ДНК не был добавлен в одну или несколько лунок Другие факторы

07004010001-02RU

Дополнительная информация

Основные характеристики теста

Тип образцов Ткань фиксированная в формалине и залитая в парафин (FFPET)

Минимальный необходимый объем образца 5-мкм срез FFPET

Аналитическая чувствительность 50 нг ДНК с 5 % мутантных последовательностей

Аналитическая специфичность 100 % согласованность с секвенированием

R88Q N345K C420R E542K

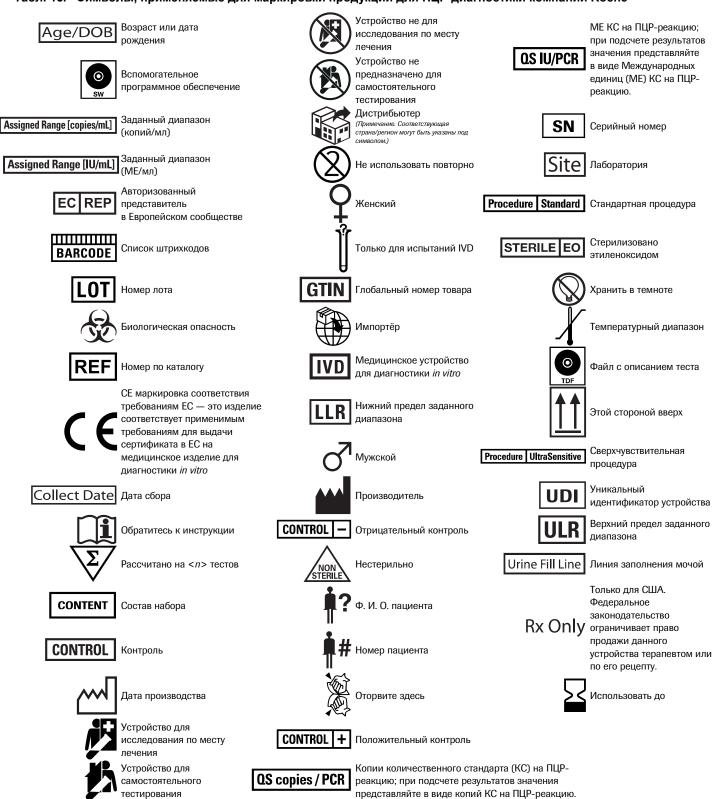
Выявляемые генотипы E545X (E545A, E545D *, E545G или E545K)

Q546X (Q546E, Q546K, Q546L или Q546R)

M1043I **

H1047X (H1047L, H1047R или H1047Y)

G1049R


^{*} При замене аминокислоты E545D тест определяет только мутацию по типу нуклеотидной замены с.1635G>T.

^{**} При замене аминокислоты M1043I тест определяет только мутацию по типу нуклеотидной замены с.3129G>T.

Условные обозначения

Приведенные ниже символы применяются для маркировки продукции для ПЦР-диагностики компании Roche.

Табл. 15. Символы, применяемые для маркировки продукции для ПЦР-диагностики компании Roche

07004010001-02RU

Техническая поддержка

Для получения технической поддержки (помощи) обратитесь в местный филиал в вашем регионе: https://www.roche.com/about/business/roche worldwide.htm

Производитель

Табл. 16. Производитель

Произведено в США Roche Diagnostics GmbH Sandhofer Strasse 116 68305 Mannheim, Germany www.roche.com

Сделано в США

Товарные знаки и патенты

См. https://diagnostics.roche.com/us/en/about-us/patents

Авторское право

© Roche Molecular Systems, Inc., 2023.

07004010001-02RU

Литература

- 1. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. *J Clin Oncol*. 2010;28:1075-83. PMID: 20085938.
- 2. Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. *Annu Rev Cell Dev Biol*. 2001;17:615-75. PMID: 11687500.
- 3. Workman P, Clarke P. P13 Kinase in Cancer: From Biology to Clinic. ASCO 2012 Educational Book. Available at: https://ascopubs.org/doi/pdf/10.14694/EdBook AM.2012.32.89. Accessed September 3, 2020.
- 4. Samuels Y, Diaz LA, Jr., Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. *Cancer Cell*. 2005;7:561-73. PMID: 15950905.
- 5. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. *Nat Rev Cancer*. 2002;2:489-501. PMID: 12094235.
- 6. van der Heijden MS, Bernards R. Inhibition of the PI3K pathway: hope we can believe in? *Clin Cancer Res*. 2010;16:3094-9. PMID: 20400520.
- 7. Jemal A, Bray F, Center MM, et al. Global cancer statistics. *CA Cancer J Clin*. 2011;61:69-90. PMID: 21296855.
- 8. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. *Science*. 2004;304:554. PMID: 15016963.
- 9. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. *Cancer Res.* 2008;68:6084-91. PMID: 18676830.
- Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. *JAMA oncology*. 2019;5:1749-68.
 PMID: 31560378.
- 11. Mackay J, Jemal A, Lee NC, Parkin DM. The Cancer Atlas. Atlanta, Georgia: American Cancer Society; 2006.
- 12. Bamford S, Dawson E, Forbes S, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. *Br J Cancer*. 2004;91:355-8. PMID: 15188009.
- 13. LRG. LRG_310 Gene: PIK3CA. Available at: http://ftp.ebi.ac.uk/pub/databases/lrgex/LRG_310.xml. Accessed September 3, 2020.
- 14. Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. *Gene*. 1990;93:125-8. PMID: 2227421.
- 15. Centers for Disease Control and Prevention. 2009. Biosafety in Microbiological and Biomedical Laboratories, 5th ed. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health HHS Publication No. (CDC) 21-1112.
- 16. Clinical and Laboratory Standards Institute. Protection of laboratory workers from occupationally acquired infections; Approved Guideline-Fourth Edition. CLSI Document M29-A4. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2014.
- 17. International Air Transport Association. Dangerous Goods Regulations, 61st Edition. 2020.
- 18. Clinical and Laboratory Standards Institute. Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline Second Edition. CLSI Document EP17-A2. Wayne, Pennsylvania: Clinical Laboratory Standards Institute; 2012.
- Clinical and Laboratory Standards Institute. Interference testing in clinical chemistry; Approved Guideline– Second Edition. CLSI Document EP7-A2E Appendix D. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2005.

38

Редакция документа

Сведения о редакции документа	
Doc Rev. 2.0 08/2023	Внесены обновления для включения требований IVDR (регламента о медицинских устройствах для диагностики <i>in vitro</i>). Исправлены 3 опечатки в номенклатуре белков и нуклеотидов в Табл. 1. В раздел Хранение реагентов и правила работы с ними добавлена информация о протекании. В раздел Меры предосторожности добавлена информация о необходимости соблюдать
	инструкции и о серьезных инцидентах.
	В раздел Экзогенные включены сведения о концентрации.
	Обновлен текст раздела Необходимые дополнительные материалы : исключено упоминание сторонних организаций.
	Обновлена страница символов.
	Обновлена информация об текущих экономических операторах.
	Обновлен раздел Товарные знаки и патенты.
	В случае возникновения вопросов свяжитесь с местным представительством компании Roche.

С кратким отчетом по безопасности и эффективности можно ознакомиться по следующей ссылке: https://ec.europa.eu/tools/eudamed