

LightCycler® 480 SYBR Green I Master

Version 12

Content version: April 2011

Easy-to-use hot-start reaction mix for PCR using the LightCycler® 480 System

Cat. No. 04 707 516 001 5 × 1 ml

 $(5 \times 100 \text{ reactions}, 20 \mu l \text{ each})$

Cat. No. 04 887 352 001 10 × 5 ml

 $(10 \times 500 \text{ reactions}, 20 \mu l \text{ each})$

Store the kit at -15 to -25°C

Keep LightCycler® 480 SYBR Green I Master away from light!

www.roche-applied-science.com

Table of Contents

1.	What this Product Does	4
	Number of Tests	4
	Kit Contents	4
	Storage and Stability	4
	Additional Equipment and Reagents Required	5
	Application	5
2.	How To Use this Product	. 6
2.1	Before You Begin	6
	Sample Material	6
	Negative Control	6
	Primers	6
	MgCl ₂	6
2.2	Experimental Protocol	7
	LightCycler® 480 Instrument Protocol	7
	Preparation of the PCR Mix	9
2.3	Related Procedures	10
	Prevention of Carry-Over Contamination	10
	Two-step RT-PCR	10
3.		11
	~	11
	······································	12
4.	Troubleshooting	
5.	Additional Information on this Product	15
	How this Product Works	15
	Test Principle	16
	References	17
		17
6.	Supplementary Information	18
6.1		18
	Text Conventions	18
	Symbols	18
6.2	Changes to Previous Version	18
6.3	Ordering Information	19
6.4	Disclaimer of License	19
	NOTICE TO PURCHASER	19
6.5	Trademarks	19

R

0 T 0 C 0

1. What this Product Does

Number of Tests

The kit is designed for

- 500 reactions (Cat. No. 04 707 516 001)
- 5,000 reactions (Cat. No. 04 887 352 001) with a final reaction volume of 20 μ l each.

Kit Contents

Label LightCycler® 480 SYBR Green I Master; 2× cond A) Cat. No. 04 707 516 001; B) Cat. No. 04 887 3			
Vial/Cap	Contents/Function		
A) 1/green B) colorless	A) 5 vials, 1 ml each B) 10 vials, 5 ml each • ready-to-use hot-start PCR mix • contains FastStart Taq DNA Polymerase, reaction buffer, dNTP mix (with dUTP instead of dTTP), SYBR Green I dye, and MgCl ₂		
Label	LightCycler® 480 SYBR Green I Master; H ₂ O, PCR-grade		
Labei	A) Cat. No. 04 707 516 001; B) Cat. No. 04 887 352 001		
A) 2/colorless B) colorless	A) 5 vials, 1 ml each B) 2 vials, 25 ml each • to adjust the final reaction volume		

Storage and Stability

Store the kit at -15 to -25° C until the expiration date printed on the label.

Keep the Master (vial 1, green cap) away from light.

- · The kit is shipped on dry ice.
- Once the kit is opened, store the kit components as described in the following table:

Label	Storage
LightCycler® 480 SYBR Green I Master; 2× conc.	 Store at -15 to -25°C. After first thawing the master may be stored for up to 4 weeks at +2 to +8°C. Avoid repeated freezing and thawing! Keep vial 1 away from light!
LightCycler® 480 SYBR Green I Master; H ₂ O, PCR-grade	• Store at -15 to -25°C

The complete PCR mix (i.e., LightCycler[®] 480 SYBR Green Master supplemented with primers and template) is stable for up to 24 hrs at room temperature. Keep the PCR mix away from light!

Additional Equipment and Reagents Required

Additional reagents and equipment required to perform reactions with the LightCycler® 480 SYBR Green I Master using the LightCycler® 480 System include:

- LightCycler[®] 480 Instrument I * or LightCycler[®] 480 Instrument II *
- LightCycler® 480 Multiwell Plate 384* or LightCycler® 480 Multiwell Plate 96*
- Standard swing-bucket centrifuge containing a rotor for multiwell plates with suitable adaptors
- LightCycler[®] Uracil-DNA Glycosylase* (optional [‡])
- Nuclease-free, aerosol-resistant pipette tips
- Pipettes with disposable, positive-displacement tips
- Sterile reaction (Eppendorf) tubes for preparing master mixes and dilutions

Application

LightCycler® 480 SYBR Green I Master is designed for research studies. When used with the LightCycler® 480 System, this kit is ideally suited for hot-start PCR applications. In combination with the LightCycler® 480 System and suitable PCR primers, this kit allows very sensitive detection and quantification of defined DNA sequences. The kit can also be used to perform two-step RT-PCR. It can also be used with heat-labile Uracil-DNA Glycosylase to prevent carry-over contamination during PCR.

In principle, the kit can be used for the amplification and detection of any DNA or cDNA target. However, you would need to adapt each amplification protocol to the reaction conditions of the LightCycler[®] 480 Instrument and design specific PCR primers for each target. See the LightCycler[®] 480 Operator's Manual for general recommendations.

The amplicon size should not exceed 750 bp in length. For optimal results, select a product length of 500 bp or less.

The ready-to-use LightCycler[®] 480 SYBR Green I Master offers convenience and ease of use because

- no additional pipetting steps to combine enzyme and reaction buffer are necessary,
- the addition of MgCl₂ to the reaction mixture is not necessary, thus avoiding time-consuming optimization steps.
- ⚠ The performance of the kit described in this Instruction Manual is warranted only when it is used with the LightCycler® 480 System.

^{*} available from Roche Applied Science; see Ordering Information for details

2. How To Use this Product

2.1 Before You Begin

Sample Material

- Use any template DNA (e.g., genomic or plasmid DNA, cDNA) suitable for PCR in terms of purity, concentration, and absence of inhibitors. For reproducible isolation of nucleic acids use:
 - either the MagNA Pure LC Instrument or the MagNA Pure Compact Instrument together with a dedicated nucleic acid isolation kit (for automated isolation) or
 - a High Pure nucleic acid isolation kit (for manual isolation).

For details see the Roche Applied Science Biochemicals catalog or home page, http://www.roche-applied-science.com.

- Use up to 50 100 ng complex genomic DNA or up to 10⁸ copies plasmid DNA for reaction volume of 20 μl. For larger volumes, the amount of template can be increased equivalently.
- Lising a too high amount of template DNA might reduce the maximum fluorescence signal by outcompeting the SYBR Green I dye.
- If you are using a non-purified cDNA sample from reverse transcription, especially if it contains high background concentrations of RNA and oligonucleotides, you can improve your results by using a maximum of 2 μl of that sample and applying a 10 min pre-incubation at 95°C. This will result in lower crossing point (Cp) values with a decreased standard deviation.

Negative Control

Always run a negative control with the samples. To prepare negative controls:

- replace the template DNA with PCR-grade water (vial 2; this will reveal whether a contamination problem exists)
- (in a 2-step RT-PCR setup) omit addition of reverse transcriptase to the cDNA synthesis reaction (this will indicate whether DNA in RNA samples causes false-positive results)

Primers

Use PCR primers at a final concentration of 0.2 to 1 μM . The recommended starting concentration is 0.5 μM each.

The optimal primer concentration is the lowest concentration that results in the lowest Cp and an adequate fluorescence for a given target concentration.

MgCl₂

The composition of the LightCycler[®] 480 SYBR Green I Master is optimized for almost all primer combinations.

You do not need to add additional MgCl₂ to the mix to get efficient and specific PCR!

LightCycler® 480 Instrument Protocol

2.2

The following procedure is optimized for use with the LightCycler® 480 Instrument.

- ⚠ If the instruments type is not stated, "LightCycler® 480 Instrument" stands for LightCycler® 480 Instrument I and II.
- Program the LightCycler® 480 Instrument before preparing the reaction mixes.
 A LightCycler® 480 Instrument protocol that uses LightCycler® 480 SYBR Green I Master contains the following programs:
- Pre-Incubation for activation of FastStart Taq DNA polymerase and denaturation of the DNA
- Amplification of the target DNA
- Melting Curve for PCR product identification
- Cooling the multiwell plate

For details on how to program the experimental protocol, see the LightCycler® 480 Operator's Manual.

A) Protocol for use with LightCycler® 480 Multiwell Plate 96

The following table shows the PCR parameters that must be programmed for a LightCycler[®] 480 System PCR run with the LightCycler[®] 480 SYBR Green I Master using a LightCycler[®] 480 Multiwell Plate 96.

Setup		
Detection Format	Block Type	Reaction Volume
SYBR Green	96	10 – 100 μl
Programs		
Program Name	Cycles	Analysis Mode
Pre-Incubation	1	None
Amplification	45 ¹⁾	Quantification
Melting Curve	1	Melting Curves
Cooling	1	None

Temperature Ta	rnets			
Target (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)
Pre-Incubation				
95	None	00:05:00 ³⁾	4.4	-
Amplification				
95	None	00:00:10	4.4	_
primer dependent ²⁾	None	00:00:05 – 00:00:20 ⁴⁾	2.2 (Target °C≥ 50°C) 1.5 (Target °C <50°C) 7)	-
72	Single	00:00:05 - 00:00:30 ^{4) 5)}	4.4	-
Melting Curve 8)			
95	None	00:00:05	4.4	-
65	None	00:01:00	2.2	-
97	Continuous	-	_	5 - 10 ⁶⁾
Cooling				
40	None	00:00:10	1.5	-

2.2

B) Protocol for use with LightCycler® 480 Multiwell Plate 384

The following table shows the PCR parameters that must be programmed for a LightCycler® 480 System PCR run with the LightCycler® 480 SYBR Green I Master using a LightCycler® 480 Multiwell Plate 384.

U	0 ,				
Setup					
Detection Form	at	Bloc	к Туре	Reactio	n Volume
SYBR Green		384		3 – 20 μ	,I
Programs					
Program Name		Cycle	es	Analysi	s Mode
Pre-Incubation		1		None	
Amplification		45 ¹⁾		Quantification	
Melting Curve		1		Melting	Curves
Cooling		1		None	
Temperature Ta	rgets				
Target (°C)	Acquisition Mode	n	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)
Pre-Incubation					_
95	None		00:05:00 ³⁾	4.8	-
Amplification					
95	None		00:00:10	4.8	_
primer dependent ²⁾	None		00:00:05 – 00:00:20 ⁴⁾	2.5 (Target °C ≥ 50°C) 2.0 (Target °C <50°C)	
72	Single		00:00:05 - 00:00:30 ^{4) 5)}	4.8	-
Melting Curve					
95	None		00:00:05	4.8	
65	None		00:01:00	2.5	
97	Continuous	3	-	_	5 - 10 ⁶⁾
Cooling					
40	None		00:00:10	2.0	-

¹⁾ 45 cycles are suitable for most assays. If the assay is optimized and has steep amplification curves and early crossing points (even when target concentrations are low), 40 cycles should be sufficient. Reducing the number of cycles will reduce the time required for the assay!

²⁾ For initial experiments, set the target temperature (*i.e.*, the primer annealing temperature) 5° C below the calculated primer $T_{\rm m}$.

³⁾ If high polymerase activity is required in early cycles, you might improve results by extending the pre-incubation to 10 min. Especially, apply such an extended pre-incubation time when working with unpurified cDNA samples as template. Do not use more than 2 µl unpurified cDNA sample.

⁴⁾ For greater precision in target quantification experiments, it can be advantageous (in some cases) to choose longer annealing and extension times for the amplification cycles.

O Calculate the hold time for the PCR elongation step by dividing the amplicon length over 25 (e.g., a 500 bp amplicon requires 20 s elongation time).

- $^{6)}$ The $T_{\rm m}$ calculated by $T_{\rm m}$ Calling Analysis might differ approx. 0.5°C when using either the lowest (5) or highest (10) possible value of Acquisitions/°C.
- For users of LightCycler[®] 480 Software 1.1: (From LightCycler[®] 480 Software 1.2 on, the Cooling Ramp Rate can be set to maximum.)
 - For the 96-multiwell plate: For target temperatures of 50°C and above, set the Ramp Rate for Cooling to 2.2°C/s. For target temperatures below 50°C, set the Ramp Rate to 1.5°C/s!
 - For the 384-multiwell plate: For target temperatures of 50°C and above, set the Ramp Rate for Cooling to 2.5°C/s. For target temperatures below 50°C, set the Ramp Rate to 2.0°C/s!
- $^{8)}$ The $T_{\rm m}$ calculated by $T_{\rm m}$ Calling Analysis might differ by up to 2°C when using either the lowest (10 µl) or highest (100 µl) possible reaction volume.

PCR Mix

Preparation of the Follow the procedure below to prepare one 20 µl standard reaction.

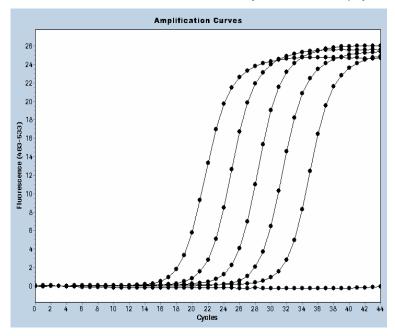
- ⚠ Do not touch the surface of the LightCycler® 480 Multiwell Plate and Multiwell Sealing Foil when handling them. Always wear gloves during handling.
- Thaw one vial of "LightCycler® 480 SYBR Green I Master" (vial 1. green cap) and Water, PCR-grade.
 - Keep the Master mix away from light.
- Prepare a 10× conc. solution of the PCR primers.
- In a 1.5 ml reaction tube on ice, prepare the PCR Mix for one 20 µl reaction by adding the following components in the order mentioned helow:

Component	Volume
Water, PCR-grade (vial 2, colorless cap)	3 μΙ
PCR Primer, 10× conc.	2 μΙ
Master Mix, 2× conc. (vial 1, green cap)	10 μl
Total volume	15 µl

- (2) To prepare the PCR Mix for more than one reaction, multiply the amount in the "Volume" column above by z, where z = the number of reactions to be run + sufficient additional reactions.
- Mix carefully by pipetting up and down. Do not vortex.
 - Pipet 15 µl PCR mix into each well of the LightCycler® 480 Multiwell Plate.
 - Add 5 µl of the DNA template.
 - Seal the Multiwell Plate with LightCycler® 480 Multiwell Sealing Foil.
- Place the Multiwell Plate in the centrifuge and balance it with a suitable counterweight (e.g., another Multiwell Plate).
 - Centrifuge at 1,500 \times q for 2 min (3,000 rpm in a standard swing-bucket centrifuge containing a rotor for multiwell plates with suitable adaptors).
- Load the Multiwell Plate into the the LightCycler® 480 Instrument. 0
- Start the PCR program described above.
 - A If you use reaction volumes different from 20 μl, be sure to adapt the right volume in the running protocol. As a starting condition, we recommend to use the same hold times as for the 20 µl volume.

Prevention of Uracil-DNA N-Glycosylase (UNG) is suitable for preventing carry-over con-**Carry-Over** tamination in PCR. This carry-over prevention technique involves incorporating **Contamination** deoxyuridine triphosphate (dUTP, a component of the Master Mix in this kit) into amplification products, then pretreating later PCR mixtures with UNG. If a dUTP-containing contaminant is present in the later PCRs, it will be cleaved by a combination of the UNG and the high temperatures of the initial denaturation step; it will not serve as a PCR template.

- ⚠ Use only LightCycler® Uracil-DNA Glycosylase* in combination with the LightCycler® 480 SYBR Green I Master.
- Since your target DNA template contains thymidine rather than uridine, it is not affected by this procedure.
- \bigcirc The use of UNG might influence the melting temperature (T_m) in melting curve analysis.


Two-step RT-PCR LightCycler® 480 SYBR Green I Master can also be used to perform two-step RT-PCR. In two-step RT-PCR, the reverse transcription of RNA into cDNA is separated from the other reaction steps and is performed outside the LightCycler® 480 System. Subsequent amplification and online monitoring is performed according to the standard LightCycler® 480 System procedure, using the cDNA as the starting sample material. Transcriptor First Strand cDNA Synthesis Kit* is recommended for reverse transcription of RNA into cDNA. Synthesis of cDNA is performed according to the detailed instructions provided with the kit.

> ⚠ For initial experiments, we recommend running undiluted, 1:10 diluted, and 1:100 diluted cDNA template in parallel to determine the optimum template amount. If you use undiluted cDNA as template, we recommend to extend the pre-incubation time to 10 minutes.

3. Results

Quantification Analysis

The following amplification curves were obtained using the LightCycler® 480 SYBR Green I Master in combination with the LightCycler® h-G6PDH House-keeping Gene Set*, targeting human glucose-6-phosphate dehydrogenase (G6PDH) mRNA. The fluorescence values versus cycle number are displayed.

Fig. 1: Serially diluted samples containing cDNA derived from 5×10^5 , 5×10^4 , 5×10^3 , 5×10^2 , and 50 copies of *in vitro* transcript as starting template were amplified using the LightCycler 480 SYBR Green I Master. As a negative control, template cDNA was replaced by PCR-grade water.

continued on next page

Melting Curve Specificity of the amplified PCR product was assessed by performing a melting Analysis curve analysis on the LightCycler® 480 Instrument. The resulting melting curves allow discrimination between primer-dimers and specific product. The specific product melts at a higher temperature than the primer-dimers (no primer dimers visible for the G6PDH example shown below). The melting curves display the specific amplification of the G6PDH RNA when starting from cDNA derived from 5×10^5 , 5×10^4 , 5×10^3 , 5×10^2 , and 50 copies of in vitro transcript.

Smaller reaction volumes may result in melting temperature variations.

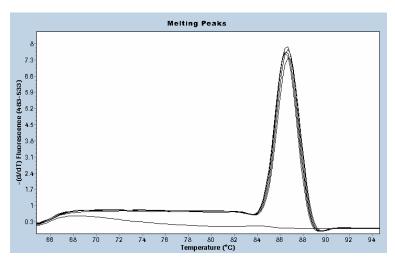


Fig. 2: Melting curve analysis of amplified samples with cDNA derived from 5×10^5 , 5×10^5 10^4 , 5×10^3 , 5×10^2 , and 50 copies of *in vitro* transcript as starting template. As a negative control, template DNA was replaced by PCR-grade water.

4. Troubleshooting

Amplification curves reach plateau phase before cycling is complete.

Log-linear phase of amplification just starts as the amplification program finishes.

No amplification occurs.

0	D
Cause	Recommendation
Starting amount of nucleic acid is very high.	Stop the cycling program by clicking the <i>End Program</i> button. The next cycle program will start automatically.
The number of cycles is too high.	Reduce the number of cycles in the program <i>Amplification</i> .
Starting amount of nucleic acid is very low.	 Improve PCR conditions (<i>e.g.</i>, primer design). Use more starting DNA template. Repeat the run.
The number of cycles is too low.	Increase the number of cycles in the cycle program.
Wrong Detection Format	When programming the experiment, select "SYBR Green I" as Detection Format.
FastStart Taq DNA polymerase is not fully activated.	 Make sure PCR included a pre-incubation step at 95°C for 5 – 10 min. Make sure denaturation time during cycles is 10 s.
Pipetting errors or omitted reagents.	Check for missing reagents.Check for missing or defective dye.
Scale of axes on graph are unsuitable for analysis.	Change the values for the x- and y-axis: right- click on the chart and select Chart Preferences from the context menu. Change the maximum and/or minimum axis values appropriately.
Measurements do not occur.	Check the temperature targets of the experimental protocol. For SYBR Green I detection format, choose "Single" as the acquisition mode at the end of the elongation phase.
Amplicon length is >900 bp.	Do not use amplicons >900 bp. Optimal results are obtained with amplicons of 500 bp or less
Impure sample material inhibits reaction.	 Do not use more than 5 μl of DNA per 20 μl PCR reaction mixture. Repurify the nucleic acids to ensure removal of inhibitory agents
Deterioration of dye in reaction mixtures; dyes not stored properly.	 Store the Master Mix at -15 to -25°C, and keep it away from light. Avoid repeated freezing and thawing.
Reaction conditions are not optimized, leading to poor PCR efficiency.	 Primer concentration should be between 0.2 and 1.0 μM Check annealing temperature of primers. Check experimental protocol. Always run a positive control along with your samples.

Fluorescence intensity is too low.

4

	Cause	Recommendation
Fluorescence intensity varies.	Skin oils on the surface of the multiwell sealing foil.	Always wear gloves when handling the multi- well plate and the sealing foil.
Amplification curve reaches plateau at a lower signal level than the other samples.	Starting amount of genomic DNA is too high; DNA captures dye, producing a high background signal. There is not enough dye left to monitor the increase of fluorescence signal during amplification.	 Do not use more than 50 – 100 ng of complex genomic DNA in a 20 μl reaction. Instead of SYBR Green I use a sequence-specific probe-based detection format (e.g., hydrolysis probes) which allows analysis of up to 500 ng DNA (for a 20 μl reaction volume).
	Dye bleached.	Make sure the Master Mix is kept away from light. Avoid repeated freezing and thawing.
Negative control samples give a positive signal.	Contamination, or presence of primer-dimers.	 Remake all critical solutions. Pipet reagents on a clean bench. Use heat-labile UNG to eliminate carry-over contamination.
Double melting peak appears for one product.	Two products of different length or GC-content are amplified (<i>e.g.</i> , due to pseudogenes or mispriming).	 Check products on an agarose gel. Elevate the reaction stringency by: redesigning the primers checking the annealing temperature performing a "touch-down" PCR using a probe-based detection format for better specificity.
Melting tempera- ture of a product varies from exper- iment to experi- ment.	Variations in reaction mixture (e.g., salt concentration).	 Check purity of template solution. Reduce variations in parameters such heat-labile UNG, primer preparation, and program settings.
	Different intensity of lamp (due to aging or exchange of lamp).	Run positive control.
Only a primer- dimer peak appears, with no specific PCR product peak seen; or very high primer-dimer peaks.	Primer-dimers have out- competed specific PCR product for available primers.	 Keep all samples at +2 to +8°C until the run is started. Keep the time between preparing the reaction mixture and starting the run as short as possible. Increase starting amount of DNA template. Increase annealing temperature in order to enhance stringency.
	Quality of primer is poor.	Purify primer more thoroughly.
	Sequence of primers is inappropriate.	Redesign primers.

Troubleshooting, continued

4

	Cause	Recommendation
Primer-dimer and product peaks are very close together.	Unusually high GC-content of the primers.	 Redesign primers. Run melting curve at high acquisition/°C rate (>10 acquisitions/°C).
Very broad primer-dimer peak with multi- ple peaks.	Heterogeneous primers with primer-dimer variations (<i>e.g.</i> , concatemers, loops).	Redesign primers.
One peak of the same height occurs in all samples.	Contamination in all samples.	Use fresh solutions.
High standard deviation of crossing point (CP) values	Impure, heterogenous DNA template	 Increase pre-incubation time to 10 min. Use a maximum of 2 μl unpurified cDNA sample.

5. Additional Information on this Product

How this Product Works

LightCycler® 480 SYBR Green I Master is a ready-to-use reaction mix designed specifically for applying the SYBR Green I detection format on the LightCycler® 480 Instrument. It is used to perform hot-start PCR in 96- or 384-multiwell plates. Hot-start PCR has been shown to significantly improve the specificity and sensitivity of PCR (1, 2, 3, 4) by minimizing the formation of non-specific amplification products at the beginning of the reaction.

FastStart Taq DNA Polymerase is a chemically modified form of thermostable recombinant Taq DNA polymerase that shows no activity up to 75°C. The enzyme is active only at high temperatures, where primers no longer bind non-specifically. The enzyme is completely activated (by removal of blocking groups) in a single pre-incubation step (95°C, 5 – 10 minutes) before cycling begins. Activation does not require the extra handling steps typical of other hot-start techniques.

Test Principle

Generation of PCR products can be detected by measurement of the SYBR Green I fluorescence signal. SYBR Green I intercalates into the DNA helix (5). In solution, the unbound dye exhibits very little fluorescence; however, fluorescence (wavelength, 530 nm) is greatly enhanced upon DNA-binding. Therefore, during PCR, the increase in SYBR Green I fluorescence is directly proportional to the amount of double-stranded DNA generated. Since SYBR Green I dye is very stable (only 6% of the activity is lost during 30 amplification cycles) and the LightCycler® 480 Instrument's optical filter set matches the wavelengths of excitation and emission, it is the reagent of choice when measuring total DNA.

The basic steps of DNA detection by SYBR Green I during real-time PCR on the LightCycler[®] 480 System are:

- ① At the beginning of amplification, the reaction mixture contains the denatured DNA, the primers, and the dye. The unbound dye molecules weakly fluoresce, producing a minimal background fluorescence signal which is subtracted during computer analysis.
- ② After annealing of the primers, a few dye molecules can bind to the double strand. DNA binding results in a dramatic increase of the SYBR Green I molecules to emit light upon excitation.
- ③ During elongation, more and more dye molecules bind to the newly synthesized DNA. If the reaction is monitored continuously, an increase in fluorescence is viewed in real-time. Upon denaturation of the DNA for the next heating cycle, the dye molecules are released and the fluorescence signal falls.
- Fluorescence measurement at the end of the elongation step of every PCR cycle is performed to monitor the increasing amount of amplified DNA.

To prove that only your desired PCR product has been amplified, you may perform a melting curve analysis after PCR. In melting curve analysis the reaction mixture is slowly heated to 97°C, which causes melting of double-stranded DNA and a corresponding decrease of SYBR Green I fluorescence. The instrument continuously monitors this fluorescence decrease and displays it as melting peaks. Each melting peak represents the characteristic melting temperature ($T_{\rm m}$) of a particular DNA product (where the DNA is 50% double-stranded and 50% single-stranded). The most important factors that determine the $T_{\rm m}$ of dsDNA are the length and the GC-content of that fragment. If PCR generated only one amplicon, melting curve analysis will show only one melting peak. If primer-dimers or other non-specific products are present, they will be shown as additional melting peaks. Checking the $T_{\rm m}$ of a PCR product can thus be compared with analyzing a PCR product by length in gel electrophoresis.

References

- 1 Chou, Q et al (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. *Nucleic Acid Res.* 20, 71717-1723.
- 2 Kellogg, DE et al (1994). TaqStart Antibody: hot-start PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. BioTechniques 16, 1134-1137.
- 3 Birch, DE et al (1996). Simplified hot start PCR. Nature 381, 445-446.
- 4 Roche Diagnostics (1999). PCR Manual, 2nd edition. pp 52-58.
- 5 Zipper, H et al (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. *Nuc. Acid Res.* 32, e103.

Quality Control The LightCycler® 480 SYBR Green I Master is function tested using the LightCycler® 480 Instrument.

6. Supplementary Information

6.1 Conventions

Text Conventions

To make information consistent and memorable, the following text conventions are used in this Instruction Manual:

Text Convention	Usage
Numbered stages labeled ①, ②, etc.	Stages in a process that usually occur in the order listed.
Numbered instructions labeled 1, 2, etc.	Steps in a procedure that must be performed in the order listed.
Asterisk *	Denotes a product available from Roche Applied Science.

Symbols

In this Instruction Manual, the following symbols are used to highlight important information:

Symbol	Description
@	Information Note: Additional information about the current topic or procedure.
M	Important Note: Information critical to the success of the procedure or use of the product.

6.2 Changes to Previous Version

· License disclaimer - new information

Roche Applied Science offers a large selection of reagents and systems for life science research. For a complete overview of related products and manuals, please visit and bookmark our home page, www.roche-applied-science.com, and our Special Interest Sites for:

- Real-time PCR Systems (LightCycler[®] Carousel-based System, LightCycler[®] 480 System, and Universal ProbeLibrary): http://www.lightcycler.com
- Automated Sample Preparation (MagNA Lyser Instrument, MagNA Pure Compact System, and MagNA Pure LC System): http://www.magnapure.com
- DNA & RNA preparation Versatile Tools for Nucleic Acid Purification: http://www.roche-applied-science.com/napure
- Real-Time qPCR Assays with prevalidated UPL-probes: http://www.universalprobelibrary.com

Instruments

Software

Accessories

Product	Pack Size	Cat. No.
LightCycler® 480 Instrument II, 96-well	1 instrument with control unit and accessories	05 015 278 001
LightCycler® 480 Instrument II, 384-well	1 instrument with control unit and accessories	05 015 243 001
LightCycler® 480 Software, Version 1.5	1 software package	04 994 884 001
LightCycler® 480 LIMS Interface Module	1 software package	05 066 310 001
LightCycler® 480 Gene Scanning Software	1 software package	05 103 908 001
LightCycler® 480 Multiple Plate Analysis Software	1 software package	05 075 122 001
LightCycler® 480 Thermal Block Cycler Unit (96-well) Silver	96-well thermal block cycler unit, including block cycler cover, storage box and loading device	05 015 219 001
LightCycler® 480 Thermal Block Cycler Unit (384-well) Silver	384-well thermal block cycler unit, including block cycler cover, storage box and loading device	05 015 197 001
LightCycler® 480 Multiwell Plate 96	50 plates with 50 sealing foils	04 729 692 001
LightCycler® 480 Multiwell Plate 384	50 plates with 50 sealing foils	04 729 749 001
LightCycler® 480 Multiwell Plate 96, clear	50 plates with 50 sealing foils	05 102 413 001
LightCycler® 480 Multiwell Plate 384, clear	50 plates with 50 sealing foils	05 102 430 001
LightCycler® 480 Sealing Foil	1 × 50 foils	04 729 757 001
LightCycler® 480 Sealing Foil Applicator		04 706 170 001

	Product	Pack Size	Cat. No.
PCR Reagents	LightCycler® 480 High Resolution Melting Master	1 kit (5 \times 100 reactions, 20 μ l each)	04 909 631 001
	LightCycler® 480 Probes Master	1 kit (5 × 100 reactions, 20 µl each) 1 kit (10 × 500 reactions,	04 707 494 001 04887 301 001
		20 μl each) 1 kit (1 × 5,000 reactions, 20 μl each)	04 902 343 001
	LightCycler® Genotyping Master	1 kit (5 \times 100 reactions, 20 μ l each)	04 707 524 001
	LightCycler® RNA Master Hydrolysis Probe	1 kit (5 × 100 reactions)	04 991 885 001
Universal ProbeLibrary	Universal ProbeLibrary Set, Human	Library of 90 pre-validated detection probes	04 683 633 001
	Universal ProbeLibrary Set, Mouse	Library of 90 pre-validated detection probes	04 683 641 001
	Universal ProbeLibrary Set, Rat	Library of 90 pre-validated detection probes	04 683 650 001
	Universal ProbeLibrary Extension Set	Library of 75 pre-validated detection probes (probes #91 to #165)	04 869 877 001
Associated Kits and Reagents	LightCycler® Uracil-DNA Glycosylase	100 U (50 μl)	03 539 806 001
	LightCycler® h-G6PDH Housekeeping Gene Set	1 set (96 reactions)	03 261 883 001
	Transcriptor Reverse Transcriptase	250 U 500 U 2,000 U	03 531 317 001 03 531 295 001 03 531 287 001
	Transcriptor First Strand cDNA Synthesis Kit	1 kit	04 379 012 001
	First Strand cDNA Synthesis Kit for RT-PCR (AMV)	1 kit	11 483 188 001

6.4 Disclaimer of License

NOTICE TO PURCHASER

Certain License Disclaimers in this document have changed. For current information on license disclaimers for a particular product, please refer to the Online Technical Support page (http://technical-support.roche.com).

SYBR Green I is manufactured by Molecular Probes, Inc., and is provided under license from Molecular Probes, Inc., for direct research use for PCR, where the dye is present during the PCR.

6.5 Trademarks

LIGHTCYCLER, LC, FASTSTART, MAGNA PURE, MAGNA LYSER, and

HIGH PURE are trademarks of Roche.

SYBR is a trademark of Molecular Probes, Inc., Eugene, OR, USA.

Other brands or product names are trademarks of their respective holders.

Regulatory Disclaimer

For life science research only. Not for use in diagnostic procedures.

Contact and Support

If you have questions or experience problems with this or any Roche Applied Science (RAS) product, please contact our Technical Support staff. Our scientists commit themselves to providing rapid and effective help.

We also want you to contact us if you have suggestions for enhancing RAS product performance or using our products in new or specialized ways. Such customer information has repeatedly proven invaluable to RAS and the worldwide research community.

To ask questions, solve problems, suggest enhancements or report new applications, please visit our **Online Technical Support Site at:**

www.roche-applied-science.com/support

To call, write, fax, or email us, visit the Roche Applied Science home page, www.roche-applied-science.com, and select your home country. Country-specific contact information will be displayed.

On the Roche Applied Science home page select **Printed Materials** to find:

- in-depth Technical Manuals
- Lab FAQS: Protocols and references for life science research
- our quarterly Biochemica Newsletter
- Material Safety Data Sheets
- · Pack Inserts and Product Instructions

or to request hard copies of printed materials.

Roche Diagnostics GmbH Roche Applied Science 68298 Mannheim Germany