

TRSF2

Tina-quant Transferrin ver.2

Order information

REF	CONTENT		Analyzer(s) on which cobas c pack(s) can be used
08058733190	Tina-quant Transferrin ver.2 (500 tests)	System-ID 2115 001	cobas c 303, cobas c 503, cobas c 703
Materials required (but not provided):			
11355279216	Calibrator f.a.s. Proteins (5 x 1 mL)	Code 20656	
10557897122	Precinorm Protein (3 x 1 mL)	Code 20302	
11333127122	Precipath Protein (3 x 1 mL)	Code 20303	
05117003190	PreciControl ClinChem Multi 1 (20 x 5 mL)	Code 20391	
05947626190	PreciControl ClinChem Multi 1 (4 x 5 mL)	Code 20391	
05117216190	PreciControl ClinChem Multi 2 (20 x 5 mL)	Code 20392	
05947774190	PreciControl ClinChem Multi 2 (4 x 5 mL)	Code 20392	
08063494190	Diluent NaCl 9 % (123 mL)	System-ID 2906 001	

English

System information

TRSF2: ACN 21150

Intended use

In vitro test for the quantitative determination of transferrin in human serum and plasma on **cobas c** systems.

Summary^{1,2,3,4,5}

Transferrin is a glycoprotein with a molecular weight of 79570 daltons. It consists of a polypeptide strand with 2 N-glycosidically linked oligosaccharide chains and exists in numerous isoforms. The rate of synthesis in the liver can be altered in accordance with the body's iron requirements and iron reserves.

Transferrin is the iron transport protein in serum. In cases of iron deficiency, the degree of transferrin saturation appears to be an extremely sensitive indicator of functional iron depletion. The ferritin levels are depressed when there is a deficiency of storage iron. In sideropenia, an iron deficiency can be excluded if the serum transferrin concentration is low, as in inflammations or - less commonly - in cases of ascorbic acid deficiency. In screening for hereditary hemochromatosis, transferrin saturation provides a better indication of the homozygous genotype than does ferritin. The treatment of anemia with erythropoietin in patients with renal failure is only effective when sufficient depot iron is present. The best monitoring procedure is to determine transferrin saturation during therapy. Transferrin saturation in conjunction with ferritin gives a conclusive prediction of the exclusion of iron overloading in patients with chronic liver disease.

A variety of methods are available for determining transferrin including radial immunodiffusion, nephelometry and turbidimetry. The Roche transferrin assay is based on the immunological agglutination principle.

Test principle

Immunoturbidimetric assay^{6,7,8}

Human transferrin forms a precipitate with a specific antiserum which is determined turbidimetrically.

Reagents - working solutions

R1 Phosphate buffer: 55 mmol/L, pH 7.2; NaCl: 25 mmol/L; polyethylene glycol: 5%; preservative
 R3 Anti-human transferrin antibodies (rabbit): dependent on titer; NaCl: 100 mmol/L; preservative

R1 is in position B and R3 is in position C.

Precautions and warnings

For in vitro diagnostic use for health care professionals. Exercise the normal precautions required for handling all laboratory reagents.

Infectious or microbial waste:

Warning: handle waste as potentially biohazardous material. Dispose of waste according to accepted laboratory instructions and procedures.

Environmental hazards:

Apply all relevant local disposal regulations to determine the safe disposal.

Safety data sheet available for professional user on request.

cobas[®]

Reagent handling

Ready for use

Storage and stability

Shelf life at 2-8 °C:

See expiration date on **cobas c** pack label.

On-board in use and refrigerated on the analyzer:

26 weeks

Specimen collection and preparation

For specimen collection and preparation only use suitable tubes or collection containers.

Only the specimens listed below were tested and found acceptable.
 Serum

Plasma: Li-heparin plasma. Do not use EDTA or citrate plasma.

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuge samples containing precipitates before performing the assay.

See the limitations and interferences section for details about possible sample interferences.

Stability:⁹

8 days at 15-25 °C

8 days at 2-8 °C

6 months at -20 °C (±5 °C)

Materials provided

See "Reagents – working solutions" section for reagents.

Materials required (but not provided)

See "Order information" section

General laboratory equipment

Assay

For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyzer-specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma

Test definition

Reporting time 10 min

Wavelength (sub/main) 700/505 nm

Reagent pipetting Diluent (H₂O)

R1 84 µL –

R3	18 µL	–	
Sample volumes	Sample	Sample dilution	
	Sample	Diluent (NaCl)	
Normal	7.5 µL	5.0 µL	100 µL
Decreased	7.5 µL	4.0 µL	122 µL
Increased	7.5 µL	5.0 µL	100 µL

For further information about the assay test definitions refer to the application parameters screen of the corresponding analyzer and assay.

Calibration

Calibrators	S1: H ₂ O
	S2-S6: C.f.a.s. Proteins
Calibration mode	Non-linear
Calibration frequency	Automatic full calibration - after reagent lot change Full calibration - as required following quality control procedures

Calibration interval may be extended based on acceptable verification of calibration by the laboratory.

Traceability: This method has been standardized against the reference preparation of the IRMM (Institute for Reference Materials and Measurements) BCR470/CRM470 (RPPHS - Reference Preparation for Proteins in Human Serum).¹⁰

Quality control

For quality control, use control materials as listed in the "Order information" section. In addition, other suitable control material can be used.

The control intervals and limits should be adapted to each laboratory's individual requirements. It is recommended to perform quality control always after lot calibration and subsequently at least every 26 weeks. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the defined limits.

Follow the applicable government regulations and local guidelines for quality control.

Calculation

cobas c systems automatically calculate the analyte concentration of each sample in the unit g/L (µmol/L, mg/dL).

Conversion factors: g/L x 12.6 = µmol/L

g/L x 100 = mg/dL

Limitations - interference

Criterion: Recovery within $\pm 10\%$ of initial value at a transferrin concentration of 2 g/L.

Icterus:¹¹ No significant interference up to an I index of 60 for conjugated and unconjugated bilirubin (approximate conjugated and unconjugated bilirubin concentration: 1026 µmol/L or 60 mg/dL).

Hemolysis:¹¹ No significant interference up to an H index of 1000 (approximate hemoglobin concentration: 621 µmol/L or 1000 mg/dL).

Lipemia (Intralipid):¹¹ No significant interference up to an L index of 500. There is poor correlation between the L index (corresponds to turbidity) and triglycerides concentration.

Rheumatoid factors: No significant interference from rheumatoid factors up to a concentration of 1200 IU/mL.

High dose hook-effect: No false result occurs up to a transferrin concentration of 17 g/L.

Drugs: No interference was found at therapeutic concentrations using common drug panels.^{12,13}

In very rare cases, gammopathy, in particular type IgM (Waldenström's macroglobulinemia), may cause unreliable results.¹⁴

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

ACTION REQUIRED

Special Wash Programming: The use of special wash steps is mandatory when certain test combinations are run together on cobas c systems. All special wash programming necessary for avoiding carry-over is available via the cobas link. The latest version of the carry-over evasion list can be found with the NaOHD/SMS/SCCS Method Sheet. For further instructions, refer to the operator's manual.

Limits and ranges

Measuring range

0.1-5.2 g/L (1.26-65.5 µmol/L)

Determine samples having higher concentrations via the rerun function. Dilution of samples via the rerun function is a 1:1.5 dilution. Results from samples diluted using the rerun function are automatically multiplied by a factor of 1.5.

Lower limits of measurement

Limit of Blank, Limit of Detection and Limit of Quantitation

Limit of Blank = 0.1 g/L (1.26 µmol/L)

Limit of Detection = 0.1 g/L (1.26 µmol/L)

Limit of Quantitation = 0.1 g/L (1.26 µmol/L)

The Limit of Blank, Limit of Detection and Limit of Quantitation were determined in accordance with the CLSI (Clinical and Laboratory Standards Institute) EP17-A2 requirements.

The Limit of Blank is the 95th percentile value from $n \geq 60$ measurements of analyte-free samples over several independent series. The Limit of Blank corresponds to the concentration below which analyte-free samples are found with a probability of 95 %.

The Limit of Detection is determined based on the Limit of Blank and the standard deviation of low concentration samples.

The Limit of Detection corresponds to the lowest analyte concentration which can be detected (value above the Limit of Blank with a probability of 95 %).

The Limit of Quantitation is the lowest analyte concentration that can be reproducibly measured with a total error of 20 %. It has been determined using low concentration transferrin samples.

Expected values¹⁵

2.0-3.6 g/L (25.2-45.4 µmol/L)*

* calculated by unit conversion factor

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. These data represent the performance of the analytical procedure itself.

Results obtained in individual laboratories may differ due to heterogenous sample materials, aging of analyzer components and mixture of reagents running on the analyzer.

Precision

Precision was determined using human samples and controls in accordance with the CLSI (Clinical and Laboratory Standards Institute) EP05-A3 requirements with repeatability ($n = 84$) and intermediate precision (2 aliquots per run, 2 runs per day, 21 days). Results for repeatability and intermediate precision were obtained on the cobas c 503 analyzer.

Repeatability	Mean g/L	SD g/L	CV %
PCCC1 ^{a)}	1.93	0.0118	0.6
PCCC2 ^{b)}	3.09	0.0260	0.8
Human serum 1	0.255	0.00553	2.2
Human serum 2	1.84	0.0144	0.8
Human serum 3	2.46	0.0170	0.7

Human serum 4	3.19	0.0280	0.9
Human serum 5	4.10	0.0482	1.2
<i>Intermediate precision</i>	<i>Mean</i>	<i>SD</i>	<i>CV</i>
		<i>g/L</i>	<i>%</i>
PCCC1 ^{a)}	1.93	0.0198	1.0
PCCC2 ^{b)}	3.09	0.0313	1.0
Human serum 1	0.255	0.00925	3.6
Human serum 2	1.84	0.0210	1.1
Human serum 3	2.46	0.0188	0.8
Human serum 4	3.19	0.0299	0.9
Human serum 5	4.04	0.0546	1.3

a) PreciControl ClinChem Multi 1

b) PreciControl ClinChem Multi 2

The data obtained on **cobas c** 503 analyzer(s) are representative for **cobas c** 303 analyzer(s) and **cobas c** 703 analyzer(s).

Method comparison

Transferrin values for human serum and plasma samples obtained on a **cobas c** 503 analyzer (y) were compared with those determined using the corresponding reagent on a **cobas c** 501 analyzer (x).

Sample size (n) = 65

Passing/Bablok¹⁶ Linear regression

$$y = 1.000x + 0.0308 \text{ g/L}$$

$$r = 0.981$$

The sample concentrations were between 0.120 and 5.08 g/L.

Transferrin values for human serum and plasma samples obtained on a **cobas c** 303 analyzer (y) were compared with those determined using the corresponding reagent on a **cobas c** 501 analyzer (x).

Sample size (n) = 73

Passing/Bablok¹⁶ Linear regression

$$y = 0.987x + 0.0657 \text{ g/L}$$

$$r = 0.963$$

The sample concentrations were between 0.130 and 5.09 g/L.

Transferrin values for human serum and plasma samples obtained on a **cobas c** 703 analyzer (y) were compared with those determined using the corresponding reagent on a **cobas c** 503 analyzer (x).

Sample size (n) = 74

Passing/Bablok¹⁶ Linear regression

$$y = 1.010x - 0.0466 \text{ g/L}$$

$$r = 0.947$$

The sample concentrations were between 0.175 and 4.87 g/L.

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Any serious incident that has occurred in relation to the device shall be reported to the manufacturer and the competent authority of the Member State in which the user and/or the patient is established.

References

- Wick M, Pinggera W, Lehmann P, eds. Iron Metabolism, Diagnosis and Therapy of Anemias. 5th ed. Vienna/New York: Springer-Verlag 1999.
- Haupt H, Baudner S. Behring Inst Mitt 1990;86:16-19.
- Mancini G, Carbonara AO, Heremans JF. Immunochemical quantitation of antigens by single radial Immunodiffusion Immunochemistry 1965;2:235-243.
- Buffone GJ, Lewis SA, Josefson M, et al. Chemical and immunochemical measurement of total iron-binding capacity compared. Clin Chem 1978;24:1788-1791.

- Kreutzer HJH. An immunological turbidimetric method for serum transferrin determination. J Clin Chem Clin Biochem 1976;14:401-406.
- Lizana J, Hellsing K. Manual immunonephelometric assay of proteins, with use of polymer enhancement. Clin Chem 1974;20:1181-1186.
- Tietz NW. Fundamentals of Clinical Chemistry, 2nd ed. Philadelphia, PA:WB Saunders Co 1976;278-280.
- Heidelberger M, Kendall FE. A quantitative theory of the precipitin reaction. J Exp Med 1935;62:697-720.
- Guder WG, Narayanan S, Wisser H, et al. List of Analytes; Preanalytical Variables. Brochure in: Samples: From the Patient to the Laboratory. Darmstadt: GIT-Verlag 1996.
- Baudner S, Bienvenu J, Blirup-Jensen S, et al. The certification of a matrix reference material for immunochemical measurement of 14 human serum proteins CRM470. Report EUR 15243 EN 1993;1-186.
- Glick MR, Ryder KW, Jackson SA. Graphical Comparisons of Interferences in Clinical Chemistry Instrumentation. Clin Chem 1986;32:470-475.
- Breuer J. Report on the Symposium "Drug effects in Clinical Chemistry Methods". Eur J Clin Chem Clin Biochem 1996;34:385-386.
- Sonntag O, Scholer A. Drug interference in clinical chemistry: recommendation of drugs and their concentrations to be used in drug interference studies. Ann Clin Biochem 2001;38:376-385.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. Clin Chem Lab Med 2007;45(9):1240-1243.
- Dati F, Schumann G, Thomas L, et al. Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP reference material (CRM 470). Eur J Clin Chem Clin Biochem 1996;34:517-520.
- Bablok W, Passing H, Bender R, et al. A general regression procedure for method transformation. Application of linear regression procedures for method comparison studies in clinical chemistry, Part III. J Clin Chem Clin Biochem 1988 Nov;26(11):783-790.

Symbols

Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see navifyportal.roche.com for definition of symbols used):

CONTENT

GTIN

Contents of kit

Volume for reconstitution

Global Trade Item Number

Rx only

For USA: Caution: Federal law restricts this device to sale by or on the order of a physician.

COBAS, NAVIFY, PRECICONTROL, PRECINORM, PRECIPATH and TINA-QUANT are trademarks of Roche.

All other product names and trademarks are the property of their respective owners.

Additions, deletions or changes are indicated by a change bar in the margin.

© 2023, Roche Diagnostics

CE 0123

Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim
www.roche.com

+800 5505 6606

