TABLE OF CONTENTS
Table of Contents.. 1
INTENDED USE.. 2
SUMMARY AND EXPLANATION OF THE TEST ... 2
PRINCIPLES OF THE PROCEDURE.. 3
 Target Selection .. 3
 Specimen Preparation... 4
 Reverse Transcription and PCR Amplification ... 4
 Detection of PCR Products in a COBAS® TaqMan® Test ... 5
 Fundamentals of COBAS® TaqMan® Test Quantitation .. 5
 HIV-1 RNA Quantitation .. 7
REAGENTS .. 8
WARNINGS AND PRECAUTIONS .. 10
STORAGE AND HANDLING REQUIREMENTS ... 11
MATERIALS PROVIDED .. 11
MATERIALS REQUIRED BUT NOT PROVIDED ... 12
 Instrumentation and Software ... 12
 Disposables .. 12
OTHER MATERIALS REQUIRED BUT NOT PROVIDED ... 13
SPECIMEN COLLECTION, TRANSPORT, AND STORAGE .. 14
 A. Specimen Collection .. 14
 B. Specimen Transport ... 14
 C. Specimen Storage .. 14
INSTRUCTIONS FOR USE ... 15
 Specimen and Control Preparation ... 15
 Amplification and Detection ... 16
RESULTS .. 19
 AMPLILINK Software ... 20
 Interpretation of Results .. 20
QUALITY CONTROL .. 21
 Negative Control ... 21
 Positive Controls .. 21
PROCEDURAL PRECAUTIONS ... 22
PROCEDURAL LIMITATIONS ... 22
INTERFERING SUBSTANCES ... 22
NON-CLINICAL PERFORMANCE EVALUATION .. 23
 A. Limit of Detection ... 23
 B. Precision ... 25
 C. Linear Range ... 25
 D. Inclusivity of HIV-1 Group M .. 26
 E. HIV-1 Group O Detection .. 27

The Document Revision Information section is located at the end of this document.
INTENDED USE

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, version 2.0 (v2.0) is an in vitro nucleic acid amplification test for the quantitation of human immunodeficiency virus type 1 (HIV-1) RNA in human plasma using the COBAS® AmpliPrep Instrument for automated specimen processing and the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer for automated amplification and detection. The test can quantitate HIV-1 RNA over the range of 20 - 10,000,000 copies (cp)/mL. One copy of HIV-1 RNA is equivalent to 1.7 ± 0.1 International Units (IU) based on the WHO 1st International Standard for HIV-1 RNA for Nucleic Acid-Based Techniques (NAT) (NIBSC 97/656) 1.

This test is intended for use in conjunction with clinical presentation and other laboratory markers of disease progress for the clinical management of HIV-1 infected patients. The test can be used to assess patient prognosis by measuring the baseline HIV-1 RNA level or to monitor the effects of antiretroviral therapy by measuring changes in EDTA plasma HIV-1 RNA levels during the course of antiretroviral treatment.

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is not intended for use as a screening test for the presence of HIV-1 in blood or blood products or as a diagnostic test to confirm the presence of HIV-1 infection.

NOTE: The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 exhibits a higher level of sensitivity compared with the COBAS® AMPLICOR HIV-1 MONITOR Test, v1.5 and the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, reporting values ≥ 20 cp/mL that were undetectable or < Lower Limit of Quantitation (LLOQ) in these methods.

SUMMARY AND EXPLANATION OF THE TEST

The human immunodeficiency virus (HIV) is the etiologic agent of acquired immunodeficiency syndrome (AIDS) and is primarily transmitted by sexual contact, exposure to infected blood or blood products, or by an infected mother to her fetus.2-4. Once patients are infected with the virus, quantitative HIV-1 RNA measurement is a critical tool for disease management as well as the monitoring of antiretroviral therapy. Several studies have established the correlation of higher virus levels with increased risk of clinical progression of HIV disease, and that reductions in plasma virus levels can decrease this risk.5-7. The clinical utility of viral load monitoring during antiretroviral therapy has been determined through multiple clinical trials for drugs.3-9. The key viral endpoints for successful treatment include the magnitude of viral load reduction over time (log10 units), percentage of patients demonstrating viral suppression below the limit of detection (LOD) at key time points, and time-to-loss of virologic response (resistance or non-adherence).5-9. There is an expected concordant CD4 cell count increase in relation to the viral suppression in patients responding to therapy. These endpoints have evolved and been incorporated into all of the major United States and global HIV treatment guidelines.10-13. Specific medical decision points for HIV-1 RNA levels have been established for initiating antiretroviral therapy, determining treatment response, frequency of viral load monitoring, and determining virologic failure.10-13. In summary, quantitative HIV-1 RNA level monitoring remains the most important surrogate marker for antiretroviral response.

Virus levels in the peripheral blood can be quantified by measurement of the HIV p24 antigen in serum, by quantitative culture of HIV from plasma, or by direct measurement of viral RNA in plasma using nucleic acid amplification or signal amplification technologies.14-19. The initial direct viral RNA quantitative assays
utilized endpoint measurement of either PCR or nucleic acid amplification reactions. The detection phase of end-point PCR is executed after amplification and has limitations which include limited linear range, and time consuming process. The introduction of real-time target amplification systems implements simultaneous amplification and detection, and has significantly improved upon the limitations of end point amplification. The benefits of real-time PCR include increased sensitivity, broader linear range, and reduced turn-around processing time due to decreased reaction time.

More recently, the recognition of increasing genetic diversity of HIV has highlighted the need to further evolve the design of next-generation real-time amplification tests. In order to address the risk of mutational escape, a novel PCR design (the dual-target approach) was implemented resulting in coamplification of two target regions of HIV-1. The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is an in vitro nucleic acid amplification test that quantitates all major subtypes of HIV-1 group M and HIV-1 group O. Three primers and one probe from the HIV-1 Long Terminal Repeat (LTR) as well as four primers and one probe in the gag region target and amplify the two HIV-1 regions. Both the gag and the LTR region are phylogenetically highly conserved to ensure broad subtype coverage.

PRINCIPLES OF THE PROCEDURE

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is a nucleic acid amplification test for the quantitation of human immunodeficiency virus type 1 (HIV-1) RNA in human plasma. The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is based on three major processes: (1) specimen preparation to isolate HIV-1 RNA; (2) reverse transcription of the target RNA to generate complementary DNA (cDNA), and (3) simultaneous PCR amplification of target cDNA and detection of cleaved dual-labeled oligonucleotide detection probe specific to the target.

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 permits automated specimen preparation followed by automated reverse transcription, PCR amplification and detection of HIV-1 target RNA and HIV-1 Quantitation Standard (QS) Armored RNA. The Master Mix reagent contains primers and probes specific for both HIV-1 RNA and HIV-1 QS RNA. The Master Mix has been developed to ensure equivalent quantitation of group M subtypes of HIV-1 and HIV-1 group O. The detection of amplified DNA is performed using target-specific and QS-specific dual-labeled oligonucleotide probes that permit independent identification of HIV-1 amplicon and HIV-1 QS amplicon.

The quantitation of HIV-1 viral RNA is performed using the HIV-1 QS. It compensates for effects of inhibition and controls the preparation and amplification processes, allowing a more accurate quantitation of HIV-1 RNA in each specimen. The HIV-1 QS is a non-infectious Armored RNA construct that contains HIV sequences with identical primer binding sites as the HIV-1 target RNA and a unique probe binding region that allows HIV-1 QS amplicon to be distinguished from HIV-1 target amplicon.

The HIV-1 QS is added to each specimen at a known copy number and is carried through the subsequent steps of specimen preparation, reverse transcription, simultaneous PCR amplification and detection of cleaved dual-labeled oligonucleotide detection probes. The COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer calculates the HIV-1 RNA concentration in the test specimens by comparing the HIV-1 signal to the HIV-1 QS signal for each specimen and control.

Target Selection

Selection of the target RNA sequence for HIV-1 depends on identification of regions within the HIV-1 genome that show maximum sequence conservation among the various HIV-1 group M subtypes and HIV-1 group O specimens. In order to address the high genetic variability of the virus, two regions of HIV genome are simultaneously targeted for amplification and detection by the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two target-specific and one QS-specific dual-labeled oligonucleotide probes permit independent identification of the HIV-1 amplicon and of the HIV-1 QS amplicon. Accordingly, the appropriate selection of the primers and the dual-labeled oligonucleotide probes is critical to the ability of the test to amplify and detect the HIV-1 group M subtypes and HIV-1 group O. The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 uses reverse transcription and PCR amplification primers that define sequences within the highly conserved regions of the HIV-1 gag gene and of the HIV-1 LTR region.
Specimen Preparation

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 utilizes automated specimen preparation on the COBAS® AmpliPrep Instrument by a generic silica-based capture technique. The procedure processes 850 µL of plasma. The HIV-1 virus particles are lysed by incubation at elevated temperature with a protease and chaotropic lysis/binding buffer that releases nucleic acids and protects the released HIV-1 RNA from RNases in plasma. Protease and a known number of HIV-1 QS Armored RNA molecules are introduced into each specimen along with the lysis reagent and magnetic glass particles. Subsequently, the mixture is incubated and the HIV-1 RNA and HIV-1 QS RNA are bound to the surface of the magnetic glass particles. Unbound substances, such as salts, proteins and other cellular impurities, are removed by washing the magnetic glass particles. After separating the magnetic glass particles and completing the washing steps, the adsorbed nucleic acids are eluted at elevated temperature with an aqueous solution. The processed specimen, containing the magnetic glass particles as well as released HIV-1 RNA and HIV-1 QS RNA, is added to the amplification mixture and transferred to the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer. The HIV-1 target RNA and the HIV-1 QS RNA are then reverse transcribed, amplified and simultaneously detected by cleavage of two target-specific and one QS-specific dual-labeled oligonucleotide probe.

Reverse Transcription and PCR Amplification

The reverse transcription and PCR amplification reaction is performed with the thermostable recombinant enzyme Thermus specie Z05 DNA Polymerase (Z05). In the presence of manganese (Mn²⁺) and under the appropriate buffer conditions, Z05 has both reverse transcriptase and DNA polymerase activity. This allows both reverse transcription and PCR amplification to occur together with real-time detection of the amplicon.

Processed specimens are added to the amplification mixture in amplification tubes (K-tubes) in which both reverse transcription and PCR amplification occur. The reaction mixture is heated to allow the downstream primers to anneal specifically to the HIV-1 target RNA and to the HIV-1 QS RNA. In the presence of Mn²⁺ and excess deoxynucleotide triphosphates (dNTPs), including deoxyadenosine, deoxyguanosine, deoxycytidine, deoxyuridine and deoxymethylidene triphosphates, Z05 polymerase extends the annealed primers forming DNA strands complementary to the RNA target.

Target Amplification

Processed specimens are added to the amplification mixture in amplification tubes (K-tubes) in which PCR amplification occurs. Following reverse transcription of the HIV-1 target RNA and the HIV-1 QS RNA, the Thermal Cycler in the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer heats the reaction mixture to denature the RNA:cDNA hybrids and to expose the specific primer target sequences. As the mixture cools, the primers anneal to the target DNA, Z05 in the presence of Mn²⁺ and excess deoxynucleotide triphosphates (dNTPs), including deoxyadenosine, deoxyguanosine, deoxycytidine, deoxyuridine and deoxymethylidene triphosphates, extends the annealed primers along the target template to produce double-stranded DNA molecules termed amplicons. The COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer automatically repeats this process for a designated number of cycles, with each cycle intended to double the amount of amplicon DNA. The required number of cycles is preprogrammed into the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer. Amplification occurs only in the two regions of the HIV-1 genome between the primers; the entire HIV-1 genome is not amplified.

Selective Amplification

Selective amplification of target nucleic acid from the specimen is achieved in the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 by the use of AmpErase (uracil-N-glycosylase) enzyme and deoxyuridine triphosphate (dUTP). The AmpErase enzyme recognizes and catalyzes the destruction of DNA strands containing deoxyuridine, but not DNA containing deoxymethylidene. Deoxyuridine is not present in naturally occurring DNA, but is always present in amplicon due to the use of deoxyuridine triphosphate as one of the dNTPs in the Master Mix reagent; therefore, only amplicon contains deoxyuridine. Deoxyuridine renders contaminating amplicon susceptible to destruction by the AmpErase enzyme prior to amplification of the target DNA. Also, any nonspecific product formed after initial activation of the Master Mix by manganese is destroyed by the AmpErase enzyme. The AmpErase enzyme, which is included in the Master Mix reagent, catalyzes the cleavage of deoxyuridine-containing DNA at the deoxyuridine residues by opening the deoxyribose chain at the C1-position. When heated in the first thermal cycling step, the amplicon DNA chain breaks at the position
of the deoxyuridine, thereby rendering the DNA non-amplifiable. The AmpErase enzyme remains inactive for a prolonged period of time once exposed to temperatures above 55°C, i.e., throughout the thermal cycling steps, and therefore does not destroy target amplicon formed during amplification.

Detection of PCR Products in a COBAS® TaqMan® Test

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 utilizes real-time PCR technology. The use of dual-labeled fluorescent probes allows for real-time detection of PCR product accumulation by monitoring of the emission intensity of fluorescent reporter dyes released during the amplification process. The probes consist of HIV-1 and HIV-1 QS-specific oligonucleotide probes with a reporter dye and a quencher dye. In the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 the HIV-1 and HIV-1 QS probes are labeled with different fluorescent reporter dyes. When these probes are intact, the fluorescence of the reporter dye is suppressed by the proximity of the quencher dye due to Förster-type energy transfer effects. During PCR, the probe hybridizes to a target sequence and is cleaved by the 5’ → 3’ nuclease activity of the thermostable Z05 DNA polymerase. Once the reporter and quencher dyes are released and separated, quenching no longer occurs, and the fluorescent activity of the reporter dye is increased. The amplification of HIV-1 RNA and HIV-1 QS RNA are measured independently at different wavelengths. This process is repeated for a designated number of cycles, each cycle effectively increasing the emission intensity of the individual reporter dyes, permitting independent identification of HIV-1 RNA and HIV-1 QS RNA. The PCR cycle where a growth curve starts exponential growth is related to the amount of starting material at the beginning of the PCR.

Fundamentals of COBAS® TaqMan® Test Quantitation

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is inherently quantitative over a very wide dynamic range since the monitoring of amplicon is performed during the exponential phase of amplification. The higher the HIV-1 titer of a specimen, the earlier the fluorescence of the reporter dye of the HIV-1 probes rises above the baseline fluorescence level (see Figure 1). Since the amount of HIV-1 QS RNA is constant between all specimens, the fluorescence of the reporter dye of the HIV-1 QS probe should appear at a similar cycle for all specimens (see Figure 2). In specimens where the QS fluorescence is affected, the concentration is adjusted accordingly. The appearance of the specific fluorescent signals is reported as a critical threshold value (Ct). The Ct is defined as the fractional cycle number where reporter dye fluorescence exceeds a predetermined threshold (the Assigned Fluorescence Level), and starts the exponential growth phase of this signal (see Figure 3). A higher Ct value indicates a lower titer of initial HIV-1 target material. A 2-fold increase in titer correlates with a decrease of 1 Ct for target HIV-1 RNA, while a 10-fold increase in titer correlates with a decrease of 3.3 Ct.

Figure 1 shows the target growth curves for a dilution series spanning a 5-log₁₀ range. As the concentration of the virus increases, the growth curves shift to earlier cycles. Therefore, the leftmost growth curve corresponds to the highest viral titer level, whereas, the rightmost growth curve corresponds to the lowest viral titer level.
Figure 1
Target Growth Curves for a Dilution Series Spanning a 5-Log_{10} Range

![Figure 1](image1)

Figure 2 shows the Quantitation Standard growth curves for specimens from a viral dilution series that spans a 5-log_{10} range. The amount of Quantitation Standard added to each specimen is constant for each reaction. The Ct value of the Quantitation Standard is similar regardless of the viral titer.

Figure 2
Quantitation Standard Growth Curves for a Dilution Series of Virus Spanning a 5-Log_{10} Range

![Figure 2](image2)

Figure 3 provides an example of how the fluorescence values at every cycle are normalized for each growth curve. The Ct value is calculated where the fluorescence signal crosses the Assigned Fluorescence Level.

![Figure 3](image3)
HIV-1 RNA Quantitation

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 quantitates HIV-1 viral RNA by utilizing a second target sequence (HIV-1 Quantitation Standard) that is added to each test specimen at a known concentration. The HIV-1 QS is a non-infectious Armored RNA construct, containing fragments of HIV-1 sequences with primer binding regions identical to those of the HIV-1 *gag* target sequence. The HIV-1 QS contains HIV-1 primer binding regions and generates an amplification product of the same length and base composition as the HIV-1 *gag* target RNA. The detection probe binding region of the HIV-1 QS has been modified to differentiate HIV-1 QS amplicon from HIV-1 *gag* target amplicon.

During the annealing phase of the PCR in the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer, the specimens are illuminated and excited by filtered light, and filtered emission fluorescence data are collected for each specimen. The readings from each specimen are then corrected for instrumental fluctuations. These fluorescence readings are sent by the instrument to the AMPLILINK software and stored in a database. Pre-Checks are used to determine if the HIV-1 RNA and HIV-1 QS RNA data represent sets that are valid, and flags are generated when the data lie outside the preset limits. After all Pre-Checks are completed and passed, the fluorescence readings are processed to generate Ct values for the HIV-1 RNA and the HIV-1 QS RNA. The lot-specific calibration constants provided with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 are used to calculate the titer value for the specimens and controls based upon the HIV-1 RNA and HIV-1 QS RNA Ct values. The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is standardized against a World Health Organization International Standard for HIV-1 RNA. Titer results are reported in cp/mL. The conversion factor between reported HIV-1 RNA cp/mL and HIV-1 IU/mL has been determined by Roche Molecular Systems, Inc. to be 0.6 cp/IU (1.7 IU/cp).
REAGENTS

COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 48 Tests (P/N: 05212308 190)

HIV-1 v2.0 CS1 1 x 48 Tests
(HIV-1 Magnetic Glass Particles Reagent Cassette)
 Magnetic glass particles
 93% Isopropanol

HIV-1 v2.0 CS2 1 x 48 Tests
(HIV-1 Lysis Reagent Cassette)
 Sodium citrate dihydrate
 42.5% Guanidine thiocyanate
 < 14% Polydocanol
 0.9% Dithiothreitol

HIV-1 v2.0 CS3 1 x 48 Tests
HIV-1 Multi-Reagent Cassette containing:

 Pase (Proteinase Solution)
 Tris buffer
 < 0.05% EDTA
 Calcium chloride
 Calcium acetate
 ≤ 7.8% Proteinase
 Glycerol

 EB (Elution Buffer)
 Tris-base buffer
 0.2% Methylparaben

HIV-1 v2.0 CS4 1 x 48 Tests
HIV-1 Test-Specific Reagent Cassette containing:

 HIV-1 QS (HIV-1 Quantitation Standard)
 Tris-HCl buffer
 EDTA
 < 0.005% Poly rA RNA (synthetic)
 < 0.001% Armored HIV-1 RNA construct containing
 HIV-1 primer binding sequences and a unique
 probe binding region (non-infectious RNA in MS2
 bacteriophage)
 0.05% Sodium azide

 HIV-1 MMX (HIV-1 Master Mix)
 Tricine buffer
 Potassium acetate
 Potassium hydroxide
 20% Dimethylsulfoxide
 Glycerol
 < 0.04% dATP, dCTP, dGTP, dUTP, dTTP
 < 0.003% Upstream and downstream primers to the
 gag and the LTR region of HIV-1
 < 0.003% Oligonucleotide aptamer
< 0.003% Fluorescent-labeled oligonucleotide probes specific for HIV-1 and the HIV-1 Quantitation Standard

< 0.05% Z05 DNA Polymerase (microbial)
< 0.1% AmpErase (uracil-N-glycosylase) enzyme (microbial)
0.09% Sodium azide

CAP/CTM Mn^{2+}
(CAP/CTM Manganese Solution)
< 0.5% Manganese acetate
Glacial acetic acid
0.09% Sodium azide

HIV-1 H(+)C, v2.0
(HIV-1 High Positive Control, v2.0)
< 0.001% Armored HIV-1 RNA construct containing HIV-1 sequences (non-infectious RNA in MS2 bacteriophage).
Negative Human Plasma, non-reactive by tests for antibody to HCV, antibody to HIV-1/2, HIV p24 antigen and HBsAg; HIV-1 RNA, HCV RNA and HBV DNA not detectable by PCR methods
0.1% ProClin® 300 preservative

HIV-1 L(+)C, v2.0
(HIV-1 Low Positive Control, v2.0)
< 0.001% Armored HIV-1 RNA construct containing HIV-1 sequences (non-infectious RNA in MS2 bacteriophage).
Negative Human Plasma, non-reactive by tests for antibody to HCV, antibody to HIV-1/2, HIV p24 antigen and HBsAg; HIV-1 RNA, HCV RNA and HBV DNA not detectable by PCR methods
0.1% ProClin® 300 preservative

CTM (-) C
[COBAS® TaqMan® Negative Control (Human Plasma)]
Negative Human Plasma, non-reactive by tests for antibody to HCV, antibody to HIV-1/2, HIV p24 antigen and HBsAg; HIV-1 RNA, HCV RNA and HBV DNA not detectable by PCR methods
0.1% ProClin® 300 preservative

HIV-1 H(+)C, v2.0 Clip
(HIV-1 High Positive Control, v2.0 Barcode Clip)

HIV-1 L(+)C, v2.0 Clip
(HIV-1 Low Positive Control, v2.0 Barcode Clip)

HIV-1 (-) C Clip
(HIV-1 Negative Control, v2.0 Barcode Clip)

COBAS® AmpliPrep/COBAS® TaqMan® Wash Reagent
P/G WR

PG WR
(COBAS® AmpliPrep/COBAS® TaqMan® Wash Reagent)
Sodium citrate dihydrate
< 0.1% N-Methylisothiazolone-HCl
WARNINGS AND PRECAUTIONS

A. **FOR IN VITRO DIAGNOSTIC USE.**

B. This test is for use with human plasma collected in the anticoagulant EDTA.

C. Do not pipette by mouth.

D. Do not eat, drink, or smoke in laboratory work areas. Wear protective disposable gloves, laboratory coats, and eye protection when handling specimens and kit reagents. Wash hands thoroughly after handling specimens and test reagents.

E. **Avoid microbial and ribonuclease contamination of reagents when removing aliquots from control vials.**

F. **The use of sterile disposable pipettes and RNase-free pipette tips is recommended.**

G. Do not pool controls from different lots or from different bottles of the same lot.

H. Do not mix reagent cassettes or controls from different kits.

I. Do not open COBAS® AmpliPrep cassettes and exchange, mix, remove or add bottles.

J. Dispose of unused reagents, waste and specimens in accordance with country, federal, state and local regulations.

K. Do not use a kit after its expiration date.

L. Safety Data Sheets (SDS) are available on request from your local Roche office.

M. Specimens and controls should be handled as if infectious, using safe laboratory procedures such as those outlined in *Biosafety in Microbiological and Biomedical Laboratories* and in the CLSI document M29-A3. Thoroughly clean and disinfect all work surfaces with a freshly prepared solution of 0.5% sodium hypochlorite in deionized or distilled water.

Note: Commercial liquid household bleach typically contains sodium hypochlorite at a concentration of 5.25%. A 1:10 dilution of household bleach will produce a 0.5% sodium hypochlorite solution.

N. **CAUTION:** CTM (–) C, HIV-1 L(+)+C, v2.0 and HIV-1 H(+)+C, v2.0 contain human plasma derived from human blood. The source material has been tested and found non-reactive for the presence of hepatitis B surface antigen (HBsAg), antibodies to HIV-1/2 and HCV, and HIV p24 antigen. Testing of negative human plasma by PCR methods showed no detectable HIV-1 RNA, HCV RNA or HBV DNA. No known test methods can offer complete assurance that products derived from human blood will not transmit infectious agents. Therefore, all human sourced material should be considered potentially infectious. **CTM (–) C, HIV-1 L(+)+C, v2.0 and HIV-1 H(+)+C, v2.0 should be handled as if infectious, using safe laboratory procedures such as those outlined in *Biosafety in Microbiological and Biomedical Laboratories* and in the CLSI Document M29-A3.** Thoroughly clean and disinfect all work surfaces with a freshly prepared solution of 0.5% sodium hypochlorite in deionized or distilled water.

O. HIV-1 QS, CAP/CTM Mn²⁺ and HIV-1 MMX contain sodium azide. Sodium azide may react with lead and copper plumbing to form highly explosive metal azides. While disposing of sodium azide-containing solutions down laboratory sinks, flush the drains with a large volume of water to prevent azide buildup.

P. Wear eye protection, laboratory coats, and disposable gloves when handling any reagent. Avoid contact of these materials with the skin, eyes, or mucous membranes. If contact does occur, immediately wash with large amounts of water. Burns can occur if left untreated. If spills of these reagents occur, dilute with water before wiping dry.

Q. Do not allow HIV-1 v2.0 CS2 and liquid waste from the COBAS® AmpliPrep Instrument, which contain guanidine thiocyanate, to contact sodium hypochlorite (bleach) solution. These mixtures can produce a highly toxic gas.
R. When disposing of used COBAS® AmpliPrep Sample Processing Units (SPUs), which contain guanidine thiocyanate, avoid any contact with sodium hypochlorite (bleach) solution. These mixtures can produce a highly toxic gas.

STORAGE AND HANDLING REQUIREMENTS

A. *Do not freeze reagents or controls.*

B. Before use, visually inspect each reagent cassette and vial to ensure that there are no signs of leakage. If there is any evidence of leakage, do not use that material for testing.

C. Store HIV-1 v2.0 CS1, HIV-1 v2.0 CS2, HIV-1 v2.0 CS3 and HIV-1 v2.0 CS4 at 2°C to 8°C. Unused, these reagents are stable until the expiration date indicated. Once used, these reagents are stable for 28 days at 2°C to 8°C or until the expiration date, whichever comes first. HIV-1 v2.0 CS1, HIV-1 v2.0 CS2, HIV-1 v2.0 CS3 and HIV-1 v2.0 CS4 can be used for a maximum of 64 hours cumulative on board the COBAS® AmpliPrep Instrument. Reagents must be stored at 2°C to 8°C between instrument cycles.

D. Store HIV-1 H(+)C, v2.0, HIV-1 L(+)C, v2.0 and CTM (--) C at 2°C to 8°C. The controls are stable until the expiration date indicated. Once opened, any unused portion must be discarded.

E. Store Barcode clips [HIV-1 H(+)C, v2.0 Clip, HIV-1 L(+)C, v2.0 Clip and HIV-1 (--) C Clip] at 2°C to 30°C.

F. Store PG WR at 2°C to 30°C. PG WR is stable until the expiration date indicated. Once opened, this reagent is stable for 28 days at 2°C to 30°C or until the expiration date, whichever comes first.

MATERIALS PROVIDED

A. **COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0** (P/N: 05212308 190)

- HIV-1 v2.0 CS1
 (HIV-1 Magnetic Glass Particles Reagent Cassette)

- HIV-1 v2.0 CS2
 (HIV-1 Lysis Reagent Cassette)

- HIV-1 v2.0 CS3
 (HIV-1 Multi-Reagent Cassette)

- HIV-1 v2.0 CS4
 (HIV-1 Test–Specific Reagent Cassette)

- HIV-1 H(+)C, v2.0
 (HIV-1 High Positive Control, v2.0)

- HIV-1 L(+)C, v2.0
 (HIV-1 Low Positive Control, v2.0)

- CTM (--) C
 [COBAS® TaqMan® Negative Control (Human Plasma)]

- HIV-1 H(+)C, v2.0 Clip
 (HIV-1 High Positive Control, v2.0 Barcode Clip)

- HIV-1 L(+)C, v2.0 Clip
 (HIV-1 Low Positive Control, v2.0 Barcode Clip)

- HIV-1 (--) C Clip
 (HIV-1 Negative Control Barcode Clip)
MATERIALS REQUIRED BUT NOT PROVIDED

Instrumentation and Software

- COBAS® AmpliPrep Instrument
- COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer
- Optional: Docking Station
- Optional: cobas p 630 Instrument
- AMPLILINK Software Version 3.3 or Version 3.4 Series
- Control Unit for the AMPLILINK software, with printer
- Instrument and Software Manuals:
 - COBAS® AmpliPrep Instrument Manual for use with the AMPLILINK Software Version 3.3 and 3.4 Series
 - COBAS® TaqMan® Analyzer Instrument Manual for use with the AMPLILINK Software Version 3.3 and 3.4 Series
 - COBAS® TaqMan® 48 Analyzer Instrument Manual for use with the AMPLILINK Software Version 3.3 and 3.4 Series
 - AMPLILINK Software Version 3.3 Series Application Manual for use with the COBAS® AmpliPrep Instrument, COBAS® TaqMan® Analyzer, COBAS® TaqMan® 48 Analyzer, COBAS® AMPLICOR® Analyzer and cobas p 630 Instrument or
 - AMPLILINK Software Version 3.4 Series Application Manual

- Test definition File (TDF). See Product Information Card, provided with the kit, for name and current version of the TDF.

Disposables

- Sample processing units (SPUs)
- Sample input tubes (S-tubes) with barcode clips
- Racks of K-tips
- K-tube Box of 12 x 96
OTHER MATERIALS REQUIRED BUT NOT PROVIDED

- Sample Rack (SK 24 rack)
- Reagent Rack
- SPU rack
- K-tube capper, motorized
- K-tube capper
- K-carrier
- K-carrier Transporter
- K-carrier rack
- Pipettors with aerosol barrier or positive displacement RNase-free tips (capacity 1000 µL)*
- Disposable gloves, powderless
- Vortex mixer

* Pipettors should be accurate within 3% of stated volume. Aerosol barrier or positive displacement RNase-free tips must be used where specified to prevent specimen and amplicon cross-contamination.
SPECIMEN COLLECTION, TRANSPORT, AND STORAGE

Note: Handle all specimens and controls as if they are capable of transmitting infectious agents.

Note: This test has been validated for use with only human plasma collected in EDTA anticoagulant. Testing of other specimen types may result in inaccurate results.

A. Specimen Collection

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is for use with plasma specimens. Blood should be collected in sterile tubes using EDTA as the anticoagulant and mixed adequately according to the tube manufacturer's instructions.

Store whole blood at 2°C to 25°C for no longer than 24 hours. Separate plasma from whole blood within 24 hours of collection by centrifugation at 800-1600 x g for 20 minutes at room temperature. Transfer plasma to a sterile polypropylene tube. Figure 4 shows specimen stability data from specimen stability studies performed with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test.

![Figure 4](image)

HIV-1 Stability in Whole Blood (collected in EDTA-plasma tubes)

B. Specimen Transport

Transportation of whole blood or plasma must comply with country, federal, state and local regulations for the transport of etiological agents. Whole blood must be transported at 2-25°C and centrifuged within 24 hours of collection. Plasma may be transported at 2-8°C or frozen at -20°C to -80°C.

C. Specimen Storage

Plasma specimens may be stored at room temperature (25°C to 30°C) for up to 1 day, at 2°C to 8°C for up to 6 days, or frozen at -20°C to -80°C for up to 6 weeks. It is recommended that specimens be stored in 1100-1200 µL aliquots in sterile, 2.0 mL polypropylene screw-cap tubes (such as Sarstedt 72.694.006). Figure 5 shows the specimen stability data from specimen storage studies performed with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test.

Plasma specimens may be frozen and thawed up to 5 times without a significant loss of HIV-1 RNA. Figure 6 shows the data from a freeze-thaw study performed with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test.
INSTRUCTIONS FOR USE

Note: For detailed operating instructions, a detailed description of the possible configurations, printing results and interpreting flags, comments and error messages, refer to (1) the COBAS® AmpliPrep Instrument Manual for use with the AMPLILINK Software Version 3.3 and 3.4 Series; (2) the COBAS® TaqMan® Analyzer Instrument Manual for use with the AMPLILINK Software Version 3.3 and 3.4 Series; (3) the COBAS® TaqMan® 48 Analyzer Instrument Manual for use with the AMPLILINK Software Version 3.3 and 3.4 Series; (4) the AMPLILINK Software Version 3.3 Series Application Manual for use with the COBAS® AmpliPrep Instrument, COBAS® TaqMan® Analyzer, COBAS® TaqMan® 48 Analyzer, COBAS® AMPLICOR® Analyzer and cobas p 630 Instrument or the AMPLILINK Software Version 3.4 Series Application Manual; (5) Optional: cobas p 630 instrument Operator’s Manual Software Version 2.2.
Batch Size

Each kit contains reagents sufficient for 48 tests which may be performed in batches of 12 to 24 tests. At least one replicate each of CTM (–) C, HIV-1 L(+), v2.0 and HIV-1 H(+)C, v2.0 must be included in each batch (see "Quality Control" section).

Workflow

The COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer run must be started within 120 minutes following completion of specimen and control preparation.

Note: Do not freeze or store processed specimens and controls.

Specimen and Control Preparation

Note: If using frozen specimens, place the specimens at room temperature (15°C to 30°C) until completely thawed and vortex for 3-5 seconds before use. Controls should be removed from 2°C to 8°C storage and equilibrated to room temperature before use.

COBAS® AmpliPrep Instrument Set-up

Part A. Maintenance and Priming

A1. The COBAS® AmpliPrep Instrument is ready for operation in stand-by mode.

A2. Turn the Control Unit for the AMPLILINK software ON. Prepare the Control Unit as follows:
 1. Log onto the Microsoft Windows Operating System.
 2. Double click the AMPLILINK software icon.
 3. Log onto AMPLILINK software by entering the assigned User ID and password.

A3. Check the supply of PG WR using the Status Screen and replace if necessary.

A4. Perform all Maintenance that is listed in the Due Tab. The COBAS® AmpliPrep Instrument will automatically prime the system.

Part B. Loading of Reagent Cassettes

Note: All reagent cassettes should be removed from 2-8°C storage, immediately loaded onto the COBAS® AmpliPrep Instrument and allowed to equilibrate to ambient temperature on the instrument for at least 30 minutes before the first specimen is to be processed. Do not let reagent cassettes come to ambient temperature outside the instrument as condensation may form on the barcode labels. Do not wipe off condensation if it appears on the barcode labels.

B1. Place HIV-1 v2.0 CS1 onto a reagent rack. Place HIV-1 v2.0 CS2, HIV-1 v2.0 CS3 and HIV-1 v2.0 CS4 onto a separate reagent rack.

B2. Load the reagent rack containing HIV-1 v2.0 CS1 onto rack position A of the COBAS® AmpliPrep Instrument.

B3. Load the reagent rack containing HIV-1 v2.0 CS2, HIV-1 v2.0 CS3 and HIV-1 v2.0 CS4 onto rack position B, C, D or E of the COBAS® AmpliPrep Instrument. (see Table 1 for additional information).

Part C. Loading of Disposables

Note: Determine the number of COBAS® AmpliPrep reagent cassettes, Sample Processing Units (SPUs), Input Sample tubes (S-tubes), K-tips and K-tubes needed. One SPU, one Input S-tube, one K-tip and one K-tube are needed for each specimen or control.

Multiple workflows for use of the COBAS® AmpliPrep Instrument with the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer are possible. For reference, see Table 1 below. Depending on the workflow used, load the appropriate number of reagent cassette racks, sample racks with Input S-tubes, SPU racks, K-tip racks, K-tube racks and K-carriers on K-carrier racks onto the respective rack positions of the COBAS® AmpliPrep Instrument (see Table 1 for additional information).
C1. Place the SPUs in the SPU rack(s) and load the rack(s) onto rack position J, K, or L of the COBAS® AmpliPrep Instrument.

C2. Depending on the workflow used, load full K-tube rack(s) onto rack position M, N, O, or P of the COBAS® AmpliPrep Instrument.

C3. Load full K-tip rack(s) onto rack position M, N, O, or P of the COBAS® AmpliPrep Instrument.

C4. For workflow 3 using the COBAS® TaqMan® 48 Analyzer, load K-carriers on K-carrier rack(s) onto rack positions M & N, or O & P of the COBAS® AmpliPrep Instrument.

Table 1

Possible Workflows for using the COBAS® AmpliPrep Instrument with the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer

<table>
<thead>
<tr>
<th>Workflow</th>
<th>Transfer Mode to COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer</th>
<th>Racks, Carriers and Disposables</th>
<th>Position on COBAS® AmpliPrep Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Automated transfer of K-carrier</td>
<td>K-tubes in full K-tube racks</td>
<td>M – P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K-tips in full K-tip racks</td>
<td>M – P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input S-tubes containing</td>
<td>F – H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specimens and controls on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sample racks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPUs in SPU racks</td>
<td>J – L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS1 on Cassette rack</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS2, CS3, CS4 on Cassette</td>
<td>B – E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rack</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Manual transfer of K-tubes via sample rack(s) onto COBAS® TaqMan®</td>
<td>K-tubes in full K-tube racks</td>
<td>M – P</td>
</tr>
<tr>
<td></td>
<td>Analyzer</td>
<td>K-tips in full K-tip racks</td>
<td>M – P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input S-tubes containing</td>
<td>F – H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specimens and controls on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sample racks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPUs in SPU racks</td>
<td>J – L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS1 on Cassette rack</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS2, CS3, CS4 on Cassette</td>
<td>B – E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After specimen processing is</td>
<td>K-tubes on sample racks</td>
<td>F – H</td>
</tr>
<tr>
<td></td>
<td>finished:</td>
<td>(ready for manual transfer)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Manual transfer of K-carrier via K-carrier rack(s) onto COBAS®</td>
<td>K-tubes on sample racks</td>
<td>F – H</td>
</tr>
<tr>
<td></td>
<td>Analyzer(s)</td>
<td>K-tips in full K-tip racks</td>
<td>M – P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input S-tubes containing</td>
<td>F – H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specimens and controls on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sample racks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPUs in SPU racks</td>
<td>J – L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS1 on Cassette rack</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS2, CS3, CS4 on Cassette</td>
<td>B – E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empty barcoded K-carrier on K-carrier rack</td>
<td>M – P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After specimen processing is</td>
<td>K-tubes in K-carrier on</td>
<td>M – P</td>
</tr>
<tr>
<td></td>
<td>finished:</td>
<td>K-carrier rack</td>
<td></td>
</tr>
</tbody>
</table>
Part D. Ordering and Loading of Specimens

Note: If using the cobas p 630 instrument for preparation of specimens, refer to the cobas p 630 instrument Operators Manual.

D1. Prepare sample racks as follows: Attach a barcode label clip to each sample rack position where a specimen (S-tube) is to be placed. Attach one of the specific barcode label clips for the controls \([\text{CTM} (-) \ C, \ HIV-1 \ L(+)^C, \ v2.0 \text{ and } HIV-1 \ H(+)^C, \ v2.0]\) to each sample rack position where the controls (S-tube) are to be placed. The barcode label clips for controls should have the same control lot number as the lot number on the control vials in the kit. Make sure to assign the right control to the position with the appropriate control barcode clip. Place one Input S-tube into each position containing a barcode label clip.

D2. Using the AMPLILINK software, create specimen orders for each specimen and control in the Orders window Sample folder. Select the appropriate test file and complete by saving.

D3. Assign specimen and control orders to sample rack positions in the Orders window Sample Rack folder. The sample rack number must be for the rack prepared in Step D1.

D4. Print the Sample Rack Order report to use as a worksheet.

D5. Prepare specimen and control racks in the designated area for specimen and control addition as follows: Vortex each specimen and control \([\text{CTM} (-) \ C, \ HIV-1 \ L(+)^C, \ v2.0 \text{ and } HIV-1 \ H(+)^C, \ v2.0]\) for 3 to 5 seconds. Avoid contaminating gloves when manipulating the specimens and controls.

D6. Transfer 1000 to 1050 µL of each specimen and control \([\text{CTM} (-) \ C, \ HIV-1 \ L(+)^C, \ v2.0 \text{ and } HIV-1 \ H(+)^C, \ v2.0]\) to the appropriate barcode labeled Input S-tube using a micropipettor with an aerosol barrier or positive displacement RNase-free tip. Avoid transferring particulates and/or fibrin clots from the original specimen to the Input S-tube. Specimens and controls should be transferred to tube positions as assigned and recorded on the worksheet in Step D4. The barcode label clips for controls should have the same control lot number as the lot number on the control vials in the kit. Assign the right control to the position with the appropriate control barcode clip. Avoid contaminating the upper part of the S-tubes with specimens or controls.

D7. For workflows 1 and 2 (see Table 1 on page 17), load the sample rack(s) filled with Input S-tubes onto rack positions F, G, or H of the COBAS® AmpliPrep Instrument.

D8. For workflow 3 (see Table 1 on page 17) using the COBAS® TaqMan® 48 Analyzer, load sample rack(s) with Input S-tubes and K-tubes (one for each Input S-tube, loaded in the right position adjacent to Input S-tubes) onto rack position F, G, or H of the COBAS® AmpliPrep Instrument.

Part E. Start of COBAS® AmpliPrep Instrument Run

E1. Start the COBAS® AmpliPrep Instrument using the AMPLILINK software.

Part F. End of COBAS® AmpliPrep Instrument Run and Transfer to COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer (for workflows 2 and 3 only)

F1. Check for flags or error messages.

F2. Remove processed specimens and controls from the COBAS® AmpliPrep Instrument on either sample racks (for COBAS® TaqMan® Analyzer without Docking Station) or K-carrier racks (for COBAS® TaqMan® 48 Analyzer), depending on the workflow (for further details see Part G).

Note: Do not expose processed specimens and controls to light after completion of specimen and control preparation.
Amplification and Detection

COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer Set-up

The COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer run must be started within 120 minutes following completion of specimen and control preparation.

Note: Do not freeze or store processed specimens and controls.

Part G. Loading Processed Specimens

G1. Depending on which workflow is used (see Table 1 on page 17), perform the appropriate steps listed below to transfer the K-tubes to the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer:

Workflow 1: Automated transfer of K-carrier via docking station to the COBAS® TaqMan® Analyzer. Manual intervention is unnecessary.

Workflow 2: Manual transfer of K-tubes in sample rack(s) to the COBAS® TaqMan® Analyzer.

Workflow 3: Manual transfer of K-carrier on K-carrier rack(s) to the COBAS® TaqMan® 48 Analyzer. Manual transfer of K-carriers into COBAS® TaqMan® 48 Analyzer using the K-carrier Transporter.

Part H. Start of the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer Run

H1. Start the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer by one of the options below depending on the workflow used:

Workflow 1: No intervention necessary.

Workflow 2: Automatic start of the COBAS® TaqMan® Analyzer after insertion of sample rack(s).

Workflow 3: Fill K-carrier with empty K-tubes if there are fewer than 6 K-tubes on the K-carrier. Filling is guided by the AMPLILINK software. Open thermal cycler cover, load K-carrier into thermal cycler, and close lid. Start the COBAS® TaqMan® 48 Analyzer run.

Part I. End of COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer Run

I1. At the completion of the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer run, print the Results Report. Check for flags or error messages in the Results Report. Specimens with flags and comments are interpreted as described in the Results section below. After acceptance of results, store data in archive.

I2. Remove used K-tubes from the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer.

RESULTS

The COBAS® TaqMan® Analyzer or the COBAS® TaqMan® 48 Analyzer automatically determines the HIV-1 RNA concentration for the specimens and controls. The HIV-1 RNA concentration is expressed in cp/mL. The conversion factor for the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is 0.6 cp/IU, using the WHO 1st International Standard for HIV-1 RNA for Nucleic Acid-Based Techniques (NAT) (NIBSC 97/656).
AMPLILINK Software

The AMPLILINK software determines

- the Ct for the HIV-1 RNA and the HIV-1 QS RNA.
- the HIV-1 RNA concentration based upon the Ct values for the HIV-1 RNA and HIV-1 QS RNA and the lot-specific calibration coefficients provided on the cassette barcodes.
- that the calculated cp/mL for HIV-1 L(+)C, v2.0 and HIV-1 H(+)C, v2.0 fall within the assigned ranges.

Batch Validation – AMPLILINK Version 3.3 and Version 3.4 Series

Check AMPLILINK software results window or printout for flags and comments to ensure that the batch is valid. For control orders, a check is made to determine if the cp/mL value for the control is within its specified range. If the cp/mL value for the control lies outside of its range, a FLAG is generated to show the control has failed.

The batch is valid if no flags appear for any of the controls [HIV-1 L(+)C, v2.0; HIV-1 H(+)C, v2.0 and CTM (–) C].

The batch is not valid if any of the following flags appear for the HIV-1 Controls:

Negative Control:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC_INVALID</td>
<td>Invalid</td>
<td>An invalid result or a “valid” result that was not negative for HIV-1 target</td>
</tr>
</tbody>
</table>

Low Positive Control:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPCINVALID</td>
<td>Invalid</td>
<td>An invalid result or a control out of range</td>
</tr>
</tbody>
</table>

High Positive Control:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPCINVALID</td>
<td>Invalid</td>
<td>An invalid result or a control out of range</td>
</tr>
</tbody>
</table>

If the batch is invalid, repeat the entire batch including specimen and control preparation, reverse transcription, amplification and detection.

Interpretation of Results

For a valid batch, check each individual specimen for flags or comments on the results printout. A valid batch may include both valid and invalid specimen results depending on whether flags and/or comments are obtained for the individual specimens. Interpret the results as follows:
Specimen results are interpreted as follows:

<table>
<thead>
<tr>
<th>Titer Result</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Not Detected</td>
<td>Ct value for HIV-1 above the limit for the assay or no Ct value for HIV-1 obtained. Report results as "HIV-1 RNA not detected".</td>
</tr>
<tr>
<td>< 2.00E+01 cp/mL</td>
<td>Calculated cp/mL are below the Limit of Detection of the assay. Report results as "HIV-1 RNA detected, less than 20 HIV-1 RNA cp/mL ".</td>
</tr>
<tr>
<td>≥ 2.00E+01 cp/mL and ≤ 1.00E+07 cp/mL</td>
<td>Calculated results greater than or equal to 20 cp/mL and less than or equal to 1.00E+07 cp/mL are within the Linear Range of the assay.</td>
</tr>
<tr>
<td>> 1.00E+07 cp/mL</td>
<td>Calculated cp/mL are above the range of the assay. Report results as "greater than 1.00E+07 HIV-1 RNA cp/mL ". If quantitative results are desired, the original specimen should be diluted 1:100 with HIV-1-negative human EDTA-plasma and the test repeated. Multiply the reported result by the dilution factor.</td>
</tr>
</tbody>
</table>

Note: Specimens above the range of the assay may also produce an invalid result with a flag "QS_INVALID". If quantitative results are desired, the original specimen should be diluted 1:100 with HIV-1-negative human EDTA-plasma and the test repeated. Multiply the reported result by the dilution factor.

QUALITY CONTROL

One replicate each of the COBAS® TaqMan® Negative Control, the HIV-1 Low Positive Control, v2.0 and the HIV-1 High Positive Control, v2.0 must be included in each test batch. The batch is valid if no flags appear for any of the controls [HIV-1 L(+)C, v2.0, HIV-1 H(+))C, v2.0 and CTM (–) C].

Check the batch printout for flags and comments to ensure that the batch is valid.

Negative Control

The CTM (–) C must yield a "Target Not Detected" result. If the CTM (–) C is flagged as invalid, then the entire batch is invalid. Repeat the entire process (specimen and control preparation, amplification and detection). If CTM (–) C is consistently invalid in multiple batches, contact your local Roche office for technical assistance.

Positive Controls

The assigned titer range for HIV-1 L(+)C, v2.0 and HIV-1 H(+)C, v2.0 is specific for each lot of reagents, and is provided on the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 reagent cassette barcodes.

The HIV-1 RNA cp/mL for HIV-1 L(+)C, v2.0 and HIV-1 H(+)C, v2.0 should fall within their assigned titer ranges. If one or both of the positive controls are flagged as invalid, then the entire batch is invalid. Repeat the entire process (specimen and control preparation, amplification and detection). If the HIV-1 RNA titer of one or both of the positive controls is consistently outside the ranges in multiple batches, contact your local Roche office for technical assistance.
PROCEDURAL PRECAUTIONS

As with any test procedure, good laboratory technique is essential to the proper performance of this assay.

PROCEDURAL LIMITATIONS

1. This test has been validated for use with only human plasma collected in EDTA anticoagulant. Testing of other specimen types may result in inaccurate results.

2. The performance of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 has neither been evaluated with specimens containing HIV-1 group N, nor with specimens containing HIV-2.

3. Reliable results are dependent on adequate specimen collection, transport, storage and processing procedures.

4. The presence of AmpErase enzyme in the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 Master Mix reduces the risk of amplicon contamination. However, contamination from HIV-1 positive controls and clinical specimens can be avoided only by good laboratory practices and careful adherence to the procedures specified in this Package Insert.

5. Use of this product should be limited to personnel trained in the techniques of PCR.

6. This product can only be used with the COBAS® AmpliPrep Instrument and the COBAS® TaqMan® Analyzer or COBAS® TaqMan® 48 Analyzer.

7. The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 demonstrated a linear range from 20 cp/mL to 1.0E+07 cp/mL for HIV-1 group M specimen in EDTA plasma and a linear range from 2.0E+02 cp/mL to 2.0E+05 cp/mL for HIV-1 group O specimen in EDTA plasma.

8. Though rare, mutations within the highly conserved regions of the viral genome covered by the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 primers and/or probes may result in the under-quantitation of or failure to detect the virus.

9. Detection of HIV-1 RNA is dependent on the number of virus particles present in the specimen and may be affected by specimen collection methods and patient factors, (i.e., age, presence of symptoms, and/or stage of the infection).

10. Due to inherent differences between technologies, it is recommended that prior to switching from one technology to the next, users perform method correlation studies in their laboratory to quantify technology differences.

11. This product exhibits a higher level of sensitivity compared to its predecessors, reporting values ≥ 20 cp/mL that were undetectable or < LLoQ in prior methods. In addition, the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 returns higher titers than the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, except at both the higher range (> 5 log_{10} cp/mL) and the lower range (< 2 log_{10} cp/mL) where it returns titers that are lower.

INTERFERING SUBSTANCES

Elevated levels of triglycerides (up to 3500 mg/dL), bilirubin (up to 28 mg/dL), albumin (up to 8900 mg/dL), hemoglobin (up to 900 mg/dL) and human DNA (up to 0.4 mg/dL) in specimens as well as the presence of autoimmune diseases or respective markers such as Systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and antinuclear antibody (ANA) were shown not to interfere with the quantitation of HIV-1 RNA or impact the specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. The evaluation was performed according to CLSI Guideline EP7-A2 using one lot of COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 reagents.
The following drug compounds tested at 3 times the Peak Plasma Level (Cmax) have been shown not to interfere with the quantitation of HIV-1 RNA or impact the specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0:

<table>
<thead>
<tr>
<th>Nucleotide DNA Polymerase Inhibitors</th>
<th>Nucleoside Reverse Transcriptase and DNA Polymerase Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adefovir dipivoxil</td>
<td>Lamivudine, 3TC</td>
</tr>
<tr>
<td></td>
<td>Zidovudine</td>
</tr>
<tr>
<td></td>
<td>Stavudine, 4dT</td>
</tr>
<tr>
<td></td>
<td>Abacavir sulfate</td>
</tr>
<tr>
<td></td>
<td>Didanosine, ddl</td>
</tr>
<tr>
<td></td>
<td>Entecavir</td>
</tr>
<tr>
<td></td>
<td>Tenofovir DF</td>
</tr>
<tr>
<td></td>
<td>Telbivudine</td>
</tr>
<tr>
<td></td>
<td>Emtricitabine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIV Protease Inhibitors</th>
<th>Non-nucleoside HIV Reverse Transcriptase Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saquinavir</td>
<td>Nevirapine</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>Efavirenz</td>
</tr>
<tr>
<td>Lopinavir/Ritonavir</td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td></td>
</tr>
<tr>
<td>Nelfinavir mesylate</td>
<td></td>
</tr>
<tr>
<td>Darunavir</td>
<td></td>
</tr>
<tr>
<td>Tipranavir</td>
<td></td>
</tr>
<tr>
<td>Fosamprenavir</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIV Integrase Inhibitor</th>
<th>HIV Entry Inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raltegravir</td>
<td>Maraviroc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immune Modulators</th>
<th>Compounds for Treatment of Herpes Viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribavirin</td>
<td>Ganciclovir</td>
</tr>
<tr>
<td>Peginterferon alfa-2a</td>
<td>Valganciclovir HCl</td>
</tr>
<tr>
<td>Peginterferon alfa-2b</td>
<td>Acyclovir</td>
</tr>
</tbody>
</table>

NON-Clinical Performance Evaluation

A. Limit of Detection

The limit of detection of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was determined by testing the 2nd International HIV-1 RNA WHO Standard, NIBSC Code 97/650[^30], HIV-1 subtype B, diluted in HIV-1-negative human EDTA plasma. The limit of detection was determined for 3 reagent lots. Three dilution series were analyzed for each reagent lot. A total of approximately 126 replicates per concentration level were tested. The evaluation was performed according to CLSI Guideline EP17-A.

The concentration of HIV-1 RNA that can be detected with a positivity rate of greater than 95% as determined by PROBIT Analysis, is 20 cp/mL or 33 IU/mL. The results for the individual lots were 17.7 cp/mL (95% confidence interval: 13.7 – 26.9 cp/mL) for lot 1, 17.0 cp/mL (95% confidence interval: 14.0 – 22.6 cp/mL) for lot 2 and 14.2 cp/mL (95% confidence interval: 11.2 – 22.1 cp/mL) for lot 3. The combined results for all three reagent lots are shown in Table 2. The conversion factor is 0.6 cp/IU for the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0.
Table 2
Limit of Detection of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 Using the WHO International Standard and PROBIT Analysis

<table>
<thead>
<tr>
<th>Nominal Input (HIV-1 RNA IU/mL)</th>
<th>Nominal Input (HIV-1 RNA cp/mL)</th>
<th>No. Replicates</th>
<th>No. Positives</th>
<th>Positivity Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>60</td>
<td>126</td>
<td>126</td>
<td>100%</td>
</tr>
<tr>
<td>67</td>
<td>40</td>
<td>186</td>
<td>185</td>
<td>99%</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>126</td>
<td>125</td>
<td>99%</td>
</tr>
<tr>
<td>33</td>
<td>20</td>
<td>126</td>
<td>124</td>
<td>98%</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>59</td>
<td>53</td>
<td>90%</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>126</td>
<td>108</td>
<td>86%</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>125</td>
<td>66</td>
<td>53%</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>126</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

PROBIT 95% Hit Rate
- 27.5 IU/mL (95% confidence interval: 23.8 – 33.0 IU/mL)
- 16.5 cp/mL (95% confidence interval: 14.3 – 19.8 cp/mL)

In addition, dilutions of cell culture supernatants representing HIV-1 group M subtypes A-H in HIV-1-negative human EDTA plasma were analyzed with 2 reagent lots. Concentrations above, at and below the LOD of 20 cp/mL were tested in replicates of n = 24 per reagent lot. The assignment of nominal concentrations to the cell culture stock materials was performed by averaging the titers of the COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5; the VERSANT® HIV-1 RNA 3.0 assay (bDNA); and the Abbott RealTime HIV-1 assay. Hit rate analysis shows a positivity rate of > 95% for all subtypes at ≤ 20 cp/mL. The combined results for the 2 reagent lots are shown in Table 3.

Table 3
Limit of Detection Verification for the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 Using HIV-1 group M subtypes A-H 95% Hit Rate Analysis

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Isolate Designation</th>
<th>Lowest Concentration Level 95% Hit Rate (cp/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92UG029</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>4237A/98</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>92TH026</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>8E5/LAV</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>92BR025</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>3777A/97</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>92UG021</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>92UG035</td>
<td>11</td>
</tr>
<tr>
<td>CRF01_AE</td>
<td>92TH022</td>
<td>12</td>
</tr>
<tr>
<td>CRF01_AE</td>
<td>92TH009</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>93BR020</td>
<td>20</td>
</tr>
<tr>
<td>G</td>
<td>ARP173/RU570</td>
<td>13</td>
</tr>
<tr>
<td>H</td>
<td>HIV V1557</td>
<td>16</td>
</tr>
</tbody>
</table>
B. Precision

The precision of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was determined by analysis of serial dilutions of a HIV-1 cell culture supernatant specimen (HIV-1 subtype B) in HIV-1-negative human EDTA plasma. The titer assignment of the cell culture supernatant (stock concentration) was performed by a method that ensures traceability to the 1st International HIV-1 RNA WHO Standard, NIBSC Code 97/6561. Three reagent lots were analyzed and 15 runs per reagent lot were performed, each consisting of 6 dilution levels and 3 replicates at each level. Each specimen was taken through the entire COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 procedure, including specimen preparation, amplification and detection. Therefore, the precision reported here represents all aspects of the test procedure. The results for each reagent lot and for the 3 reagent lots combined are shown in Table 4.

<table>
<thead>
<tr>
<th>Titer (cp/mL)</th>
<th>Lot 1</th>
<th>Lot 2</th>
<th>Lot 3</th>
<th>All 3 lots combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total SD in log</td>
<td>Total SD in log</td>
<td>Total SD in log</td>
<td>Total SD in log</td>
</tr>
<tr>
<td>1.0E+02</td>
<td>0.19</td>
<td>0.16</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>1.0E+03</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>1.0E+04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>1.0E+05</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>1.0E+06</td>
<td>0.10</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>1.0E+07</td>
<td>0.11</td>
<td>0.12</td>
<td>0.14</td>
<td>0.13</td>
</tr>
</tbody>
</table>

C. Linear Range

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was found to give a linear response from 20 (Log_{10} = 1.30) HIV-1 RNA cp/mL to 1.0E+07 (Log_{10} = 7.00) HIV-1 RNA cp/mL. The evaluation was performed according to CLSI Guideline EP6-A using 2 lots of COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 reagents and serial dilutions of a high titer HIV-1 RNA (+) cell culture supernatant specimen. Two reagent lots were analyzed and 15 runs per reagent lot were performed, each consisting of 12 dilution levels and 3 replicates at each level. The results for 1 reagent lot are shown in Figure 7.

![Figure 7](image-url)
D. Inclusivity of HIV-1 Group M

Eight subtype categories have been proposed for HIV-1 group M based on nucleotide divergence. These subtypes are designated with capital alphabetical letters from A through H.

The performance of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 on HIV-1 subtypes was evaluated by analysis of cell culture stock material of representatives for each HIV-1 group M subtypes A through H. The assignment of nominal concentrations to the cell culture stock materials was performed by averaging the titers of the COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5; the VERSANT® HIV-1 RNA 3.0 assay (bDNA); and the Abbott RealTime HIV-1 assay. Each cell culture stock material was diluted to nominal concentrations of approximately 2.00E+02, 2.00E+04 and 2.00E+06 cp/mL in EDTA plasma. The concentrations were then tested in 10 replicates by the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 using 1 reagent lot. The mean log_{10} titers of all concentrations and subtypes were compared to the respective log_{10} nominal titers.

The evaluation of the 8 HIV-1 subtype isolates by the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 demonstrates equivalent results for all tested representatives of the HIV-1 group M subtypes (see Figure 8). Mean log_{10} concentration results for all subtypes were within ±0.3 log_{10} of the assigned input concentration.

Figure 8
COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0
Inclusivity Testing – Cell Culture Supernatants

- nominal concentration
- COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0
E. HIV-1 Group O Detection

Dilutions of a HIV-1 group O cell culture supernatant (isolate MVP5180) in human EDTA plasma were analyzed with 2 reagent lots. Five concentration levels at approximately 10, 20, 30, 50 and 75 cp/mL were tested in 24 replicates per reagent lot. Assignment of the nominal concentration to the cell culture stock material was performed by an FDA-approved assay. Hit rate analysis shows a positivity rate of greater than 95% at 20 cp/mL.

The HIV-1 group O cell culture stock material was diluted to nominal concentrations of approximately 2.00E+02, 2.00E+03, and 2.00E+05 cp/mL in EDTA plasma. The concentrations were then tested in 10 replicates by the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 using 1 reagent lot. The mean log_{10} titers of all concentrations were linear and within ± 0.3 log_{10} of the respective log_{10} nominal titer (see Figure 9).

In addition, 10 cell culture materials and one diluted patient specimen (11613) representing HIV-1 group O were tested in parallel in the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and in the Abbott RealTime HIV-1 assay. All 11 specimens were found positive with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 (see Table 5). Both tests returned a mean log_{10} titer for the 11 specimens within 0.1 log_{10}.
Table 5
Recognition of HIV-1 Group O Isolates by the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0

<table>
<thead>
<tr>
<th>Isolate Designation</th>
<th>Log$_{10}$ Titer COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0</th>
<th>Log$_{10}$ Titer Abbott RealTime HIV-1 Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBI PRD 301, BV-5050</td>
<td>3.09</td>
<td>2.42</td>
</tr>
<tr>
<td>BBI PRD 301, BV-5051</td>
<td>2.86</td>
<td>3.35</td>
</tr>
<tr>
<td>BBI PRD 301, BV-5003</td>
<td>3.00</td>
<td>2.71</td>
</tr>
<tr>
<td>BBI PRD 301, BV-5024</td>
<td>2.87</td>
<td>2.69</td>
</tr>
<tr>
<td>MVP5180</td>
<td>2.78</td>
<td>3.25</td>
</tr>
<tr>
<td>HIV-1 CA-9</td>
<td>3.31</td>
<td>3.08</td>
</tr>
<tr>
<td>BCF01</td>
<td>5.71</td>
<td>5.61</td>
</tr>
<tr>
<td>BCF02</td>
<td>5.16</td>
<td>5.39</td>
</tr>
<tr>
<td>BCF07</td>
<td>4.27</td>
<td>4.81</td>
</tr>
<tr>
<td>BCF011</td>
<td>5.57</td>
<td>5.26</td>
</tr>
<tr>
<td>11613</td>
<td>2.97</td>
<td>2.05</td>
</tr>
<tr>
<td>Mean Log$_{10}$ Titer</td>
<td>3.78</td>
<td>3.69</td>
</tr>
</tbody>
</table>

F. Specificity

The specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was determined with 2 reagent lots by analysis of HIV-1-negative EDTA plasma specimens from blood donors. A total of 660 individual EDTA plasma specimens showed valid results and all were negative for HIV-1 RNA in the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Based on these results, the specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 is 100% (one-sided lower 95% confidence limit: 99.6%).

G. Analytical Specificity

The analytical specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was evaluated by adding cultured organisms (viruses, bacteria, yeast) or DNA (HTLV-II) at 5E+04 particles/mL input concentration into HIV-1-negative human EDTA plasma and into HIV-1-positive EDTA plasma at 1.5E+02 cp/mL HIV-1 (see Table 6).

None of the organisms tested showed cross reactivity with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. HIV-1-positive specimens returned titer results that were within ± 0.5 log$_{10}$ from a HIV-1-positive control.
Table 6
Analytical Specificity Specimens

<table>
<thead>
<tr>
<th>Virus</th>
<th>Bacteria</th>
<th>Yeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus type 5</td>
<td>Staphylococcus aureus</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Propionibacterium acnes</td>
<td></td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human herpes virus type 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes simplex virus type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herpes simplex virus type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human T-Cell lymphotropic virus type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human T-Cell lymphotropic virus type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis A virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis C virus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H. Method Correlation

The performance of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was compared to the COBAS® AmpliPrep/COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5; to the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test and to the Abbott RealTime HIV-1 assay by analysis of 92 prospectively collected, undiluted HIV-1-positive clinical specimens and by analysis of 34 diluted cell culture supernatants. The specimens comprised HIV-1 group M subtypes A through H as well as circulating recombinant forms of the virus and were analyzed at 2 external sites. A total of 126 samples spread over the dynamic range of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 were tested with the 4 different assays. Only valid titer pairs within the linear ranges of both assays compared were considered for Deming regression analysis (see Figure 10 through Figure 12). For these figures, the dashed line indicates perfect agreement between any two test methods, i.e., \(y = x \).
Figure 10
Correlation of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the COBAS® AmpliPrep/COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5

Note: The dashed line indicates perfect agreement between any two test methods, i.e., \(y = x \).

Figure 11
Correlation of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test

Note: The dashed line indicates perfect agreement between any two test methods, i.e., \(y = x \).
Correlation of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the Abbott RealTime HIV-1 assay

Note: The dashed line indicates perfect agreement between any two test methods, i.e., y = x.

CLINICAL PERFORMANCE EVALUATION

Reproducibility

Reproducibility of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 Test was evaluated in EDTA plasma using 2 different workflows (COBAS® AmpliPrep/COBAS® TaqMan® Analyzer System and COBAS® AmpliPrep/COBAS® TaqMan® 48 Analyzer System). The study was performed using panels constructed from well-characterized HIV-1 group M, subtype B cultured virus stock and from EDTA plasma that was negative for HIV-1 RNA and HIV-1/2 antibodies. The panel covered the dynamic range of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 as well as the key medical decision points for the intended use and supported by the 2008 Department of Health and Human Services Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. The study was designed to evaluate key variables contributing to total precision variance, including lot, site/instrument, operator, day/run, and within-run. Additional analysis were conducted to compare the performance characteristics and comparative precision variability between the two workflows. Two operators at each of 3 sites performed 5 days of testing with each of 3 reagent kit lots using each workflow. Each run consisted of one set of controls (1 high positive, 1 low positive, and 1 negative) and a 7-member panel tested in triplicate (21 sample) on the COBAS® AmpliPrep Instrument. The prepared samples and controls were amplified and detected on the COBAS® TaqMan® Analyzer or on COBAS® TaqMan® 48 Analyzer.

Reproducibility was evaluated by using a random effects model with terms for (a) lot, (b) site/instrument, (c) operator nested within site/instrument, (d) day/run nested within lot, site/instrument, and operator, and (e) aliquots within-run components by using PROC MIXED and log_{10} transformed results. The percentage of variability due to each component and coefficient of variation of the log_{10} transformed HIV-1 RNA concentration were calculated. Only the Within Assay Range (2.00E+1 to 1.00E+7 cp/mL) data were investigated.
Table 7 shows the total precision variance and total precision standard deviation obtained from the COBAS® AmpliPrep/COBAS® TaqMan® Analyzer System as determined by analysis of variance. In general, the within-run component contributed more variability than other components.

Table 7

Attributable Percentage of Total Variance, Total Precision Standard Deviation, and Lognormal CV of HIV-1 RNA Concentration (log_{10} cp/mL) from Tests Within Assay Range

<table>
<thead>
<tr>
<th>HIV-1 RNA Concentration (log_{10} cp/mL)</th>
<th>Contribution to Total Variance (%)</th>
<th>Total Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>Observed (Average)</td>
<td>No. of Valid Tests¹</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1.699</td>
<td>1.832</td>
<td>270</td>
</tr>
<tr>
<td>2.602</td>
<td>2.676</td>
<td>275</td>
</tr>
<tr>
<td>3.000</td>
<td>3.067</td>
<td>274</td>
</tr>
<tr>
<td>3.699</td>
<td>3.822</td>
<td>273</td>
</tr>
<tr>
<td>4.699</td>
<td>4.746</td>
<td>273</td>
</tr>
<tr>
<td>5.699</td>
<td>5.644</td>
<td>274</td>
</tr>
<tr>
<td>6.699</td>
<td>6.751</td>
<td>259</td>
</tr>
</tbody>
</table>

Note: Within assay range results are from 20 cp/mL to 1.00E+7 cp/mL (1.30 log_{10} cp/mL to 7.00 log_{10} cp/mL), inclusive.

¹ Number of tests within assay range.

Results obtained from the COBAS® AmpliPrep/COBAS® TaqMan® 48 System Workflow are summarized in Table 8. In general, the within-run component contributed more variability than other components with the exception of the highest titer panel member.

Table 8

Attributable Percentage of Total Variance, Total Precision Standard Deviation, and Lognormal CV of HIV-1 RNA Concentration (log_{10} cp/mL) from Tests Within Assay Range

<table>
<thead>
<tr>
<th>HIV-1 RNA Concentration (log_{10} cp/mL)</th>
<th>Contribution to Total Variance (%)</th>
<th>Total Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>Observed (Average)</td>
<td>No. of Valid Tests¹</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1.699</td>
<td>1.804</td>
<td>266</td>
</tr>
<tr>
<td>2.602</td>
<td>2.672</td>
<td>273</td>
</tr>
<tr>
<td>3.000</td>
<td>3.048</td>
<td>272</td>
</tr>
<tr>
<td>3.699</td>
<td>3.814</td>
<td>271</td>
</tr>
<tr>
<td>4.699</td>
<td>4.756</td>
<td>272</td>
</tr>
<tr>
<td>5.699</td>
<td>5.647</td>
<td>272</td>
</tr>
<tr>
<td>6.699</td>
<td>6.727</td>
<td>269</td>
</tr>
</tbody>
</table>

Note: Within assay range results are from 20 cp/mL to 1.00E+7 cp/mL (1.30 log_{10} cp/mL to 7.00 log_{10} cp/mL), inclusive.

¹ Number of tests within assay range.
The results shown in Figure 13 display the plot of the total precision standard deviation with the corresponding approximate 95% Confidence Intervals against the mean log_{10} HIV-1 RNA concentrations. These results indicate a comparable precision performance between the COBAS® AmpliPrep/COBAS® TaqMan® (CAP/CTM) System and the COBAS® AmpliPrep/COBAS® TaqMan® 48 (CAP/CTM48) System configurations.

![Figure 13](image)

Clinical Sensitivity, Specificity and Method Comparison

Methodology

The primary objective of this study was to evaluate the clinical specificity and sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 in specimens from HIV-negative and HIV-1-positive subjects. Both fresh (never frozen) and frozen EDTA plasma samples were tested in each of the evaluations. The secondary objectives were to compare results and evaluate the positive percent agreement and negative percent agreement of COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results to those obtained with the FDA-approved tests, COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test HIV-1 Test and the COBAS® AMPLICOR HIV-1 MONITOR Test, v1.5.

Clinical specificity was evaluated with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 by testing 148 fresh (never frozen) samples and 418 frozen samples collected from blood donors who were negative for HIV-1/2 antibodies. Clinical sensitivity of the test was evaluated with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 by testing 117 fresh samples and 301 frozen samples in EDTA plasma collected from HIV-1-infected subjects (frozen samples were randomly distributed across test sites by CD4 cell count category). Test results from the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 were compared to those obtained with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test and COBAS® AMPLICOR HIV-1 MONITOR Test, v1.5. Testing was conducted at 3 test sites, with 1 COBAS® AmpliPrep/COBAS® TaqMan® System per site. Three COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 reagent lots were used.
Statistical Methods

Fresh and frozen samples from HIV-negative and HIV-1-positive subjects were tested with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0, the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, and the COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5. HIV-negative subjects were evaluable for statistical analyses of the specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 if they generated valid COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results. HIV-1-positive subjects were evaluable for statistical analyses of the sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 if they generated valid COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results and had valid COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test results within the linear range of the assay.

The clinical specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was calculated as the percentage of evaluable HIV-negative subjects who had Target Not Detected COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results. The associated 95% exact confidence interval (CI) was also provided. The clinical sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was calculated as the percentage of evaluable HIV-1-positive subjects who had detectable HIV-1 viral load on the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. The associated 95% exact confidence interval (CI) was also provided. The method comparison evaluated COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results separately with both comparative platforms (COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test and the COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5). Positive and negative percent agreements were calculated between the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and each comparative platform. Paired samples from HIV-1-positive subjects contributing within linear range results for both the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test were compared using scatter plots and analyzed using the Deming regression.

Results

A total of 566 evaluable HIV-negative and 418 HIV-1-positive patient specimens were included in clinical specificity and sensitivity analyses. Approximately 75% of the patient specimens were frozen and 25% were fresh. The specific distribution of each platform is summarized in Table 9.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>HIV-Negative Specimens</th>
<th>HIV-1-Positive Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>148 (26.1%)</td>
<td>117 (28.0%)</td>
</tr>
<tr>
<td>Frozen</td>
<td>418 (73.9%)</td>
<td>301 (72.0%)</td>
</tr>
<tr>
<td>Total</td>
<td>566</td>
<td>418</td>
</tr>
</tbody>
</table>

The demographic characteristics of the 418 evaluable HIV-1-positive specimens are summarized in Table 10. The CD4 cell counts of the subjects distributed approximately evenly across CD4 cell count categories (<200, 200-500, >500 cells/µL). Most of the subjects were male (74.2%) and between 30 to 49 years of age (72.5%). The ethnic distribution is comparable to that observed in the HIV-1 population of the United States.

Table 9

Evaluable HIV-1 Negative and Positive Subjects by Sample Type

The demographic characteristics of the 418 evaluable HIV-1-positive specimens are summarized in Table 10. The CD4 cell counts of the subjects distributed approximately evenly across CD4 cell count categories (<200, 200-500, >500 cells/µL). Most of the subjects were male (74.2%) and between 30 to 49 years of age (72.5%). The ethnic distribution is comparable to that observed in the HIV-1 population of the United States.
Table 10
Demographic Characteristics of Evaluable HIV-1-Positive Subjects

<table>
<thead>
<tr>
<th>Demographic Characteristic</th>
<th>Category</th>
<th>HIV-1-Positive Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>Total</td>
<td>418</td>
</tr>
<tr>
<td>CD4 Cell Count (cells/uL)</td>
<td>< 200</td>
<td>130 (31.1%)</td>
</tr>
<tr>
<td></td>
<td>200 - 500</td>
<td>152 (36.4%)</td>
</tr>
<tr>
<td></td>
<td>> 500</td>
<td>136 (32.5%)</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Fresh</td>
<td>117 (28.0%)</td>
</tr>
<tr>
<td></td>
<td>Frozen</td>
<td>301 (72.0%)</td>
</tr>
<tr>
<td>Sex</td>
<td>Male</td>
<td>310 (74.2%)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>108 (25.8%)</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>18-29</td>
<td>23 (5.5%)</td>
</tr>
<tr>
<td></td>
<td>30-39</td>
<td>100 (23.9%)</td>
</tr>
<tr>
<td></td>
<td>40-49</td>
<td>203 (48.6%)</td>
</tr>
<tr>
<td></td>
<td>50-59</td>
<td>74 (17.7%)</td>
</tr>
<tr>
<td></td>
<td>≥ 60</td>
<td>18 (4.3%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Caucasian</td>
<td>129 (30.9%)</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>46 (11.0%)</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>223 (53.3%)</td>
</tr>
<tr>
<td></td>
<td>Asian / Pacific Islander</td>
<td>3 (0.7%)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>17 (4.1%)</td>
</tr>
<tr>
<td>On Antiretroviral Medication</td>
<td>Yes</td>
<td>240 (57.4%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>178 (42.6%)</td>
</tr>
</tbody>
</table>

The clinical specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 (Table 11) was 99.3% (562/566; 95% CI = 98.2% to 99.8%), with 4 specimens classified as false positives. Three of these specimens were reported at < 20 cp/mL, below the LLoQ of the assay. The remaining single specimen out of the 566 tested was within the linear range but at a very low titer (28.8 cp/mL). The clinical specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was similar for both fresh specimens (99.3% [147/148; 95% CI = 96.3% to 100%]) and frozen specimens (99.3% [415/418; 95% CI = 97.9% to 99.9%]).

Table 11
Clinical Specificity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0

<table>
<thead>
<tr>
<th>Subject Group</th>
<th>CAP/CTM HIV-1 Test, v2.0</th>
<th>Total N</th>
<th>Clinical Specificity (95% exact CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>4 (0.7%)</td>
<td></td>
</tr>
<tr>
<td>HIV-Negative</td>
<td>Negative</td>
<td>562 (99.3%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>566</td>
<td>99.3% (98.2%, 99.8%)</td>
</tr>
</tbody>
</table>
The clinical sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was defined as the percentage of evaluable HIV-1-positive subjects who had a positive COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 result and is summarized in Table 12. The clinical sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 was 100% (418/418; 95% CI = 99.1% to 100%). There were no subjects that had false negative COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results. The clinical sensitivity was tested in an HIV-patient population reflective of that in the United States with regards to gender, age, ethnicity and exposure to antiretroviral therapy. The test demonstrated 100% clinical sensitivity independent of the above listed demographics, CD4 cell count, or sample type (fresh versus frozen).

Table 12

Clinical Sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0

<table>
<thead>
<tr>
<th>Subject Group</th>
<th>CAP/CTM HIV-1 Test, v2.0</th>
<th>Total N</th>
<th>Clinical Sensitivity (95% exact CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1-Positive</td>
<td>418 (100.0%)</td>
<td>418</td>
<td>100.0% (99.1%, 100.0%)</td>
</tr>
<tr>
<td>Positive</td>
<td>0 (0.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical Method Comparison

COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 versus the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test

The comparison of COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test results for the 950 subjects eligible for the analysis is summarized in Table 13. The positive percent agreement of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 with respect to the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test was 99.5% (427/429; 95% CI = 98.3% to 99.9%). The negative percent agreement of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 with respect to the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test was 98.1% (422/431; 95% CI = 96.5% to 99.1%). There were 10 samples with positive COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 results and negative COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test results. Three samples were at titers below the LLoQ of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, most likely a reflection of the increased sensitivity of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Three samples were false positive COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test v2.0 results from HIV-negative subjects identified in the clinical specificity analysis that again were below the LLoQ. Four samples had titers ranging from 24.9 cp/mL to 158 cp/mL and are likely reflective of the known variability associated with low titer quantitation.
Table 13
Comparison of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 versus the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test

<table>
<thead>
<tr>
<th>CAP/CTM HIV-1 Test, v2.0</th>
<th>CAP/CTM HIV-1 Test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>427</td>
<td>10</td>
</tr>
<tr>
<td>Negative</td>
<td>2</td>
<td>511</td>
</tr>
<tr>
<td>Total</td>
<td>429</td>
<td>521</td>
</tr>
</tbody>
</table>

Positive Percent Agreement (95% exact CI) = 99.5% (98.3%, 99.9%)

Negative Percent Agreement (95% exact CI) = 98.1% (96.5%, 99.1%)

CI = confidence interval; CAP/CTM HIV-1 Test = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test; CAP/CTM HIV-1 Test, v2.0 = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test, v2.0.

Note: HIV-negative and HIV-positive subjects contributing both valid CAP/CTM HIV-1 Test, v2.0 and CAP/CTM HIV-1 Test results were included in this summary table.

A total of 417 paired HIV-1-positive samples had results within the linear range of both assays and were evaluable for the method comparison analysis. Table 14 shows the mean paired difference and 95% CI for the bias between the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test. The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 returns higher titers than the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, except at both the higher range (> 5 log_{10} cp/mL) and the lower range (< 2 log_{10} cp/mL) where it returns titers that are lower (see Figure 14). The overall systematic bias is estimated as 0.2591 log_{10} cp/mL.

Table 14
Mean Paired Difference and 95% CI for the bias between the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test

| Number of Paired HIV-1-Positive Samples Within Linear Range of Both Assays = 417 |
|---------------------------------|-----------------|---------------|
| Mean Difference (log_{10} cp/mL) | Standard Error | 95% CI |
| 0.2591 | 0.0122 | (0.235, 0.283) |

CI = confidence interval; CAP/CTM HIV-1 Test = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test; CAP/CTM HIV-1 Test, v2.0 = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test, v2.0.

Note: HIV-1-positive subjects contributing both valid CAP/CTM HIV-1 Test and CAP/CTM HIV-1 Test, v2.0 results within the linear range of each assay were included in this summary table.

The results of the Deming regression analysis between COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test results for paired HIV-1-positive specimens within the linear range of both assays are tabulated in Table 15 and displayed graphically in Figure 14 (in this figure, the dashed line indicates perfect agreement between the two test methods, i.e., y = x).
Equation of Deming Regression Line: $Y = 0.9669X + 0.3871$

Number of Paired HIV-1-Positive Samples Within Linear Range of Both Assays = 417

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter Estimate log_{10} cp/mL</th>
<th>Standard Error</th>
<th>95% CI</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.3871</td>
<td>0.0488</td>
<td>(0.291, 0.483)</td>
<td>0.9375</td>
</tr>
<tr>
<td>Slope</td>
<td>0.9669</td>
<td>0.0122</td>
<td>(0.943, 0.991)</td>
<td></td>
</tr>
</tbody>
</table>

CI = confidence interval; CAP/CTM HIV-1 Test = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test; CAP/CTM HIV-1 Test, v2.0 = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test, v2.0.

Note: HIV-1-positive subjects contributing both valid CAP/CTM HIV-1 Test and CAP/CTM HIV-1 Test, v2.0 results within the linear range of each assay were included in this summary table.

Figure 14
Deming Regression Analysis Between the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test
Table 16 shows the comparison of COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 and CA HIV-1 MONITOR Test, v1.5 results for 991 subjects eligible for the analysis. The positive percent agreement of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 with respect to the COBAS® AMPLICOR® (CA) HIV-1 MONITOR Test, v1.5 was 100% (419/419; 95% CI = 99.1% to 100%). The negative percent agreement of the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 with respect to the COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5 was 97.4% (557/572; 95% CI = 95.7% to 98.5%). Of the 15 subjects with positive COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test v2.0 results and negative COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5 results, 4 were false positive COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test v2.0 results from HIV-negative subjects identified in the clinical specificity analysis that again were below the LLLOQ. Eleven were from HIV-positive subjects with COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test v2.0 results ranging from below the LLLOQ to 223 cp/mL and negative COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5 results.

Table 16

Comparison of the CAP/CTM HIV-1 Test, v2.0 With the Cobas Amplicor HIV-1 MONITOR Test, v1.5

<table>
<thead>
<tr>
<th>CAP/CTM HIV-1 Test, v2.0</th>
<th>CA HIV-1 MONITOR Test, v1.5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>419</td>
<td>15</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>557</td>
</tr>
<tr>
<td>Total</td>
<td>419</td>
<td>572</td>
</tr>
<tr>
<td>Positive Percent Agreement (95% exact CI)</td>
<td>100.0% (99.1%, 100.0%)</td>
<td></td>
</tr>
<tr>
<td>Negative Percent Agreement (95% exact CI)</td>
<td>97.4% (95.7%, 98.5%)</td>
<td></td>
</tr>
</tbody>
</table>

CI = confidence interval; CAP/CTM HIV-1 Test = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test; CAP/CTM HIV-1 Test, v2.0 = COBAS® AmpliPrep/COBAS® TaqMan HIV-1 Test, v2.0.

Note: HIV-negative and HIV-1-positive subjects contributing both valid CAP/CTM HIV-1 Test, v2.0 and CA HIV-1 MONITOR Test, v1.5 results were included in this summary table.

Conclusion

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 exhibits high levels of agreement with the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test in quantitative analyses ($r^2 = 0.9375$) and in concordance analyses (positive percent agreement = 99.5%; negative percent agreement = 98.1%). It quantifies clinical specimens 0.2591 log$_{10}$ cp/mL higher overall than the COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, with lower quantitation at the higher range (> 5 log$_{10}$ cp/mL) and the lower range (< 2 log$_{10}$ cp/mL).

The COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0 also shows high levels of agreement with the COBAS® AMPLICOR® HIV-1 MONITOR Test, v1.5 in concordance analyses (positive percent agreement = 100.0%; negative percent agreement = 97.4%).

These test results support the utility of the test for the intended use of assessing disease progression and monitoring antiretroviral therapy in HIV-1 infected patients.
REFERENCES

Updated STORAGE AND HANDLING REQUIREMENTS section to instruct the user to visually inspect the product for signs of leakage before use and to not use the product if there is any evidence of leakage.

Updated the harmonized symbol page.

Added Roche web address www.roche.com.

Please contact your local Roche Representative if you have any questions.
The following symbols are now used in labeling for Roche PCR diagnostic products.

- **Ancillary Software**
- **IVD** *In Vitro* diagnostic medical device
- **EC REP** Authorized representative in the European community
- **LLR** Lower Limit of Assigned Range
- **Barcode Data Sheet**
- **Manufacturer**
- **LOT** Batch code
- **Store in the dark**
- **Biological risks**
- **Contains sufficient for \(n\) tests**
- **Catalogue number**
- **Temperature limit**
- **Consult instructions for use**
- **Test Definition File**
- **Contents of kit**
- **Upper Limit of Assigned Range**
- **Distributed by**
- **Use-by date**
- **For IVD performance evaluation only**
- **Global Trade Item Number**
- **Rx Only** US Only: Federal law restricts this device to sale by or on the order of a physician.
- **Date of manufacture**

US Customer Technical Support 1-800-526-1247