

cobas[®] eplex blood culture identification gram-positive (BCID-GP) panel

Package Insert

Rx Only

Designed For the Patient, Optimized For the Lab®

P/N: 09556508001

GenMark Diagnostics, Inc. 5964 La Place Court Carlsbad, CA 92008 USA +1 800 428 5076

EMERGO EUROPE Westervoortsedijk 60 6827 AT Arnhem The Netherlands UK Responsible Person
Emergo Consulting (UK) Limited
c/o Cr360 –UL International
Compass House, Vision Park Histon
Cambridge CB24 9BZ, UK

10196769001-02EN Doc Rev. 2.0

TABLE OF CONTENTS

Table of Contents	2
Intended Use	4
Summary and Explanation of Test	5
Summary of Detected Organisms	6
Bacteria	6
Antimicrobial Resistance Markers	9
Pan Targets	9
Principles of Technology	10
Materials Provided	11
Composition of Reagents	11
Reagent Storage, Stability and Handling	12
Materials Not Provided	12
Equipment	12
Consumables	12
Warnings and Precautions	12
General	12
Safety	13
Laboratory	13
Specimen Collection, Handling and Storage	14
Procedure	14
Procedural Notes	14
Detailed Procedure	15
Quality Control	15
Internal Controls	15
External Controls	16
Results	17
Genus and Group Assay Result Interpretation	17
Resistance Marker Assay Result Interpretation	20
Pan Assay Results	20
Test Reports	20
Detection Report	21
External Control Report	21
Summary Report	21
Limitations of the Procedure	21
Expected Values	22
Performance Characteristics	25
Clinical Performance	25
Comparator Method	25
Demographics of Clinical Samples	
Clinical Performance	27
Genus and Group Assay Species Stratification	41
Resistance Gene Assay Species Stratification	
Co-detections in Clinical Samples	
Clinical Study cobas eplex instrument Performance	
Analytical Performance Characteristics	
Limit of Detection (Analytical Sensitivity)	

cobas eplex BCID gram-positive panel

Analytical Reactivity (Inclusivity)	63
Predicted (in silico) Reactivity for Genus and Group Assays	70
Analytical Specificity (Cross-Reactivity and Exclusivity)	78
Bottle Positivity	79
Reproducibility	80
Interfering Substances and Sample Matrix Equivalency (Bottle Evaluation)	89
Carryover and Cross-Contamination	91
Competitive Inhibition Study	
Technical Support	
Glossary of Symbols	92
References	93
Document revision	95
Trademarks	95
Patents information	96

INTENDED USE

The **cobas eplex** blood culture identification gram-positive (BCID-GP) panel is a qualitative nucleic acid multiplex *in vitro* diagnostic test intended for use on **cobas eplex** instrument for simultaneous qualitative detection and identification of multiple potentially pathogenic gram-positive bacterial organisms and select determinants associated with antimicrobial resistance in positive blood culture. In addition, the **cobas eplex** BCID-GP panel is capable of detecting a wide variety of gram-negative bacteria (Pan Gram-Negative assay) and several *Candida* species (Pan *Candida* assay). The **cobas eplex** BCID-GP panel is performed directly on blood culture samples identified as positive by a continuous monitoring blood culture system and which contain gram-positive organism.

The following bacterial organisms and genes associated with antibiotic resistance are identified using the **cobas eplex** BCID-GP panel: *Bacillus cereus* group, *Bacillus subtilis* group, *Corynebacterium*, *Cutibacterium acnes* (*Propionibacterium acnes*), *Enterococcus*, *Enterococcus faecalis*, *Enterococcus faecalis*, *Enterococcus faecalis*, *Enterococcus*, *Staphylococcus*, *Staphylococcus*, *Staphylococcus*, *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Staphylococcus lugdunensis*, *Streptococcus*, *Streptococcus agalactiae* (GBS), *Streptococcus anginosus* group, *Streptococcus pneumoniae*, *Streptococcus pyogenes* (GAS), *mecA*, *mecC*, *vanA* and *vanB*.

The **cobas eplex** BCID-GP panel contains assays for the detection of genetic determinants associated with resistance to methicillin (*mecA* and *mecC*) and vancomycin (*vanA* and *vanB*) to aid in the identification of potentially antimicrobial resistant organisms in positive blood culture samples. The antimicrobial resistance gene detected may or may not be associated with the agent responsible for disease.

The **cobas eplex** BCID-GP panel also contains targets designed to detect a broad range of organisms with a potentially misleading Gram stain result or organisms that may be missed by Gram staining altogether, for example in the case of co-infections. These include a broad Pan Gram-Negative assay as well as a Pan *Candida* assay, which is designed to detect four of the most prevalent *Candida* species: *Candida albicans*, *Candida glabrata*, *Candida krusei* and *Candida parapsilosis*.

The detection and identification of specific bacterial and fungal nucleic acids from individuals exhibiting signs and/or symptoms of bloodstream infection aids in the diagnosis of bloodstream infection when used in conjunction with other clinical information. The results from the **cobas eplex** BCID-GP panel are intended to be interpreted in conjunction with Gram stain results and should not be used as the sole basis for diagnosis, treatment, or other patient management decisions.

Negative results in the setting of a suspected bloodstream infection may be due to infection with pathogens that are not detected by this test. Positive results do not rule out co-infection with other organisms; the organism(s) detected by the **cobas eplex** BCID-GP panel may not be the definite cause of disease. Additional laboratory testing (e.g. sub-culturing of positive blood cultures for identification of organisms not detected by **cobas eplex** BCID-GP panel and for susceptibility testing, differentiation of mixed growth and association of antimicrobial resistance marker genes to a specific organism) and clinical presentation must be taken into consideration in the final diagnosis of blood stream infection.

SUMMARY AND EXPLANATION OF TEST

The **cobas eplex** BCID-GP panel is an automated qualitative nucleic acid multiplex *in vitro* diagnostic test for simultaneous detection and identification of multiple potentially pathogenic gram-positive bacterial organisms and select determinants associated with antimicrobial resistance in positive blood culture. The test also detects a wide variety of gram-negative bacteria and several pathogenic *Candida* species. The test is able to detect 20 gram-positive bacterial targets and 4 resistance genes. Multiple *Candida* species are detected as well as most relevant gram-negative organisms as summarized in **Table 1**. This test is performed on *The True Sample-to-Answer Solution®* **cobas eplex** instrument.

Gram-positive bacteria are a major cause of sepsis throughout the world. Many gram-positive organisms can cause severe sepsis, while others are considered opportunistic and are often deemed contaminants of blood products introduced into tests from the skin.¹

Table 1: Targets Detected by the cobas eplex BCID-GP panel

Bacterial Targets						
Bacillus cereus group	Micrococcus					
Bacillus subtilis group	Staphylococcus					
Corynebacterium	Staphylococcus aureus					
Cutibacterium acnes (Propionibacterium acnes)	Staphylococcus epidermidis					
Enterococcus	Staphylococcus lugdunensis					
Enterococcus faecalis	Streptococcus					
Enterococcus faecium	Streptococcus agalactiae					
Lactobacillus	Streptococcus anginosus group					
Listeria	Streptococcus pneumoniae					
Listeria monocytogenes	Streptococcus pyogenes					
Antimicrobial R	esistance Markers					
mecA (associated with resistance to methicillin)	vanA (associated with resistance to vancomycin)					
mecC (associated with resistance to methicillin)	vanB (associated with resistance to vancomycin)					
Pan Targets						
Pan Gram-Negative	Pan Candida					

Local, state, and federal rules and regulations for notification of reportable diseases are continually updated and include a number of organisms that are important for surveillance and outbreak investigations. ^{2,3} Laboratories are responsible for following their state and/or local rules pertaining to reportable pathogens and should consult their local and/or state public health laboratories for isolate and/or clinical sample submission guidelines.

SUMMARY OF DETECTED ORGANISMS

Bacteria

Bacillus cereus group

Bacillus cereus is a motile, aerobic to facultatively-anaerobic bacterium which has previously been considered a contaminant.⁴ Bacillus cereus group consists of several species including *B. cereus*, *B. weihenstephanensis*, *B. thuringiensis* and *B. anthracis*.⁵ These organisms have been implicated in pathologies ranging from progressive pneumonia to fulminant sepsis as well as infections of the central nervous system. Furthermore, Bacillus cereus is of growing concern in patients with hematologic malignancies, wound infections and intravascular devices.⁶ Bacillus cereus has also been noted in intravenous drug users.⁷

Bacillus subtilis group

Members of the *Bacillus subtilis* group are facultatively-aerobic, motile, commonly found in the soil⁸ and consist of several species and subspecies including *B. subtilis*, *B. tequilensis*, *B. vallismortis*, *B. mojavensis*, *B. atrophaeus*, *B. amyloliquefaciens* (including *B. siamensis* and *B. velezensis*, *B. methylotrophicus*) and *B. licheniformis* (including *B. sonorensis*).^{9, 10} *Bacillus* species are one of the most common sources of blood culture contamination which represent an estimated 3% of all blood culture tests run.¹¹ Despite being common contaminant, *Bacillus subtilis* group members have also been implicated in disease and have shown resistance to a range of antimicrobial agents leading to recurrent septicemia in some patients.¹²

Corynebacterium

Corynebacterium are catalase-positive, non-motile, gram-positive rods and are often a part of natural skin flora. These bacteria are typically considered contaminants of blood cultures unless found in multiple bottles but are increasingly recognized as opportunistic pathogens, especially in immunocompromised patients and catheter-related bloodstream infections. Antibiotic resistance is common in Corynebacterium. 4

Cutibacterium acnes (Propionibacterium acnes)

Cutibacterium acnes is a non-sporulating, gram-positive, facultatively-anaerobic bacillus which is part of the natural flora of the human skin, conjunctiva, oral cavity and large intestine. ¹⁵ Although typically considered a blood culture contaminant, *Cutibacterium acnes* has been implicated in cases of endocarditis, endophthalmitis, intravascular infections, central nervous system infections and even arthritis. ¹⁶ In the cases of bloodstream infection, the mortality rate has been placed at approximately 5% despite its general susceptibility to a broad range of antibiotics. ¹⁶ *Cutibacterium acnes* is increasingly found in association with implanted devices including prosthetic joints, cerebrovascular shunts, breast implants and cardiovascular devices. This association with implanted devices may be due to the ability of the bacterium to form biofilms. ¹⁷

Enterococcus

Enterococcus species are the third leading cause of hospital-acquired bacteremia, accounting for approximately 12% of all hospital infections. Enterococci are inherently resistant to β -lactams, cephalosporins, glycopeptides, fluoroquinolones and aminoglycosides. Enterococci are inherently resistant to β -lactams, cephalosporins, glycopeptides, fluoroquinolones and aminoglycosides. Enterococcus captured resistance to other antibiotics including plasmid-mediated vanA and vanB gene complexes, which confer high and moderate-level vancomycin resistance, respectively, has increased in recent years. Infections with vancomycin resistant strains of Enterococcus increase the risk of death from 45% to 75% as compared to susceptible strains.

Enterococcus faecalis, Enterococcus faecium

Although several species of *Enterococcus* can cause infections, the two most common are *Enterococcus* faecalis, which accounts for 80-90% of human infections and *Enterococcus* faecium, which accounts for most of the remaining infections.^{21,22} While both species can harbor vancomycin resistance, *Enterococcus* faecium is responsible for the majority of vancomycin-resistant enterococcal (VRE) infections, which have resulted in mortality rates as high as 75%.^{22,23}

Lactobacillus

Lactobacilli are anaerobic or facultatively-anaerobic gram-positive rods. They are part of normal GI flora and are commonly considered blood culture contaminants although they have been reported as opportunistic organisms in immunocompromised patients.²⁴

Listeria

Bacteria in the *Listeria* genus are facultatively-anaerobic, rod-shaped coccobacilli and are ubiquitous in the environment. Food-borne outbreaks of *Listeria* have occurred throughout the world and have been on the rise since 2008.²⁵ The *Listeria* genus contains at least 17 species. With the exception of *Listeria monocytogenes*, *Listeria* species are considered opportunistic and typically cause severe or even fatal infections only in immunocompromised persons.²⁶

Listeria monocytogenes

Listeria monocytogenes is most typically a foodborne pathogen and is associated with infections especially in immunocompromised persons, the elderly and pregnant women.²⁶ In the case of pregnant women, the fetal mortality rate has been reported as high as 45% in some countries.²⁷ Listeriosis in persons with weakened immune systems may also lead to meningitis, brain infection, or severe bloodstream infection.²⁸

Micrococcus

This highly diverse genera is made up of oxidase-positive, strictly aerobic cocci which typically occur in pairs, tetrads, or irregular clusters.²⁹ *Micrococcus* species are generally considered to be blood culture contaminants due to their ubiquity on human skin and in the environment,³⁰ they have proven to be opportunistic pathogens and implicated in recurrent bacteremia, septic shock, endocarditis, meningitis and other conditions in immunosuppressed patients.³¹

Staphylococcus

Staphylococci are members of the family Micrococcaceae and have an irregular grape-like clustering morphology. Staphylococci are divided into two major groups: coagulase-positive and coagulase-negative Staphylococci (CoNS).³² In the past, coagulase-negative Staphylococci were typically believed to represent contamination when isolated from blood cultures. More recent studies have shown that CoNS can also be a source of true bacteremia, especially in patients with prosthetic devices and central venous catheters. Though only a low percentage of CoNS isolates are clinically significant, they are ranked as the third most common cause of bacteremia due to their high overall prevalence. Most organisms within the genera do not infect humans, however, S. aureus and S. lugdunensis have been implicated in a range of clinical infections including bacteremia, bone and joint infections and meningitis.³³

Staphylococcus aureus

Staphylococcus aureus is a coagulase-positive bacteria frequently found in the human nose, respiratory tract and on the skin. Staphylococcus aureus infection can cause a diverse array of potentially fatal infections,³⁴ including bacteremia, pneumonia, endocarditis and osteomyelitis.³⁵ When isolated from blood culture, Staphylococcus aureus is associated with a high morbidity and mortality rate.³⁶

Approximately 10% of *Staphylococcus aureus* isolates in the United States are susceptible to penicillin, although many may be susceptible to oxacillin and methicillin.³⁷ Recent estimates point to methicillin-resistant *Staphylococcus aureus* (MRSA), which are resistant to both methicillin and oxacillin, as the cause of over 70,000 invasive infections and over 9,000 deaths in the United States each year alone.³⁷

A major reason that *Staphylococcus aureus* can develop resistance to antibiotics so readily is its ability to harbor mobile genetic elements, which allow for transfer of resistance genes among *Staphylococcus aureus* strains. The two most common genes are *mecA* and *mecC*, which code for proteins that confer resistance to methicillin and oxacillin.

Staphylococcus epidermidis

Staphylococcus epidermidis has traditionally been considered an innocuous commensal organism of the human skin. It is now being seen as an important opportunistic pathogen and accounts for between 74% and 92% of all hospital-acquired CoNS infections.³⁸ Staphylococcus epidermidis is able to form biofilms on plastic devices, and isolates are often resistant to a multitude of antibiotics, further complicating effective treatment. Reports of mortality rates approaching 25% have been noted in retrospective studies.³⁹

Staphylococcus lugdunensis

Staphylococcus lugdunensis is unique among CoNS due to its propensity for causing aggressive native valve infective endocarditis. Staphylococcus lugdunensis has also been implicated in bone and joint infections, soft tissue infections, bacteremia and meningitis. This species is similar to Staphylococcus aureus in that infections can be severe and progress rapidly, however, most isolates of Staphylococcus lugdunensis remain susceptible to a wide variety of antimicrobial agents. Approximately 3% of CoNS infections are caused by Staphylococcus lugdunensis, although cases are likely underreported due to a lack of speciation of CoNS in clinical labs.

Streptococcus

Streptococcus are spherical or ovoid bacteria that group together in pairs or in chains. They are catalase-negative, non-spore-forming, facultative anaerobes.⁴⁴ Some species, like *Streptococcus pneumoniae* and *Streptococcus pyogenes* are well characterized pathogens, while others are considered opportunistic pathogens.⁴⁴

Streptococcus agalactiae (GBS)

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a commensal beta-hemolytic bacteria present in the gastrointestinal and urogenital tracts of up to 30% of healthy adults. ⁴⁵ Approximately one in ten children acquire GBS during the birthing process, although only 1% develop invasive disease. ⁴⁵⁵ While Streptococcus agalactiae does not typically cause disease, it is capable of causing a wide range of infections including pneumonia, bloodstream infections, urinary tract infections, and meningitis, in addition to stillbirth. ⁴³ There are approximately 26,500 cases of severe GBS infections in the United States each year, with most represented as bloodstream infections, of which 5% prove fatal. ⁴⁶

Streptococcus anginosus group

The *Streptococcus anginosus* group includes *S. anginosus*, *S. intermedius* and *S. constellatus*, all of which are typically considered commensal oral and gastrointestinal flora. When they do cause disease, they have a propensity toward dissemination and abscess formation.⁴⁷ Members of this group may be alpha, beta, or gamma hemolytic with the type of hemolysis varying even within each species. *Streptococcus anginosus* group species can cause invasive pyogenic infections, endocarditis, as well as localized infections of the gastrointestinal and urogenital tracts, the liver, lungs and brain.⁴⁸

Streptococcus pneumoniae

Streptococcus pneumoniae is an alpha-hemolytic Streptococcus species which can cause a diverse set of infections including those of the ear, eye and sinuses. While more than 90 serotypes of Streptococcus pneumoniae exist, the 10 most common are responsible for over 60% of invasive disease worldwide. As a colonizer of the upper respiratory tract, Streptococcus pneumoniae is a common cause of pneumonia with between 25 and 30% of these cases progressing to pneumococcal bacteremia.⁴⁹

Streptococcus pyogenes (GAS)

Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a beta-hemolytic bacteria capable of causing a wide range of diseases which can be invasive or non-invasive in nature. These diseases include pharyngitis, impetigo, scarlet fever, bacteremia, toxic shock syndrome and others. ⁵⁰ Invasive GAS infections are associated with an overall mortality rate of 10-13% according to the Centers for Disease Control. ⁵¹

Antimicrobial Resistance Markers

mecA / mecC

Both *mecA* and *mecC* are genetic determinants associated with methicillin resistance, most commonly with Methicillin Resistant *Staphylococcus aureus* (MRSA). Methicillin resistant *Staphylococcus aureus* strains are resistant to all beta-lactams including cephalosporins and carbapenems.⁵² Resistance in MRSA is caused by the production of a novel *mecA*-encoded penicillin-binding protein 2a (PBP2a) or its novel homologue encoded by *mecC*. Resistance in MRSA is achieved through the decreased binding affinity to beta-lactams which prevents effective treatment with methicillin. While both *mecA* and *mecC* are capable of conferring resistance to methicillin, they share only 70% sequence similarity,⁵³ which has resulted in many early PCR-based assays misclassifying *mecC* positive strains as methicillin-susceptible.

vanA / vanB

Both *vanA* and *vanB* are genetic determinants associated with vancomycin resistance found on mobile genetic elements called transposons. Transposons can either be found chromosomally integrated or on plasmids. Isolates containing the *vanA* marker are resistant to high levels of vancomycin as well as teicoplanin. In contrast, *vanB* isolates are typically moderately resistant to vancomycin and susceptible to teicoplanin. Mortality rates for vancomycin resistant *Enterococcus* species have been reported as high as 75% as compared to 45% for susceptible strains.²⁰

Pan Targets

Gram staining is highly accurate; however some organisms are known to be gram-variable, meaning that the Gram stain may produce misleading results. Additionally, inaccurate Gram stains have been noted in the instance of polymicrobial infections.⁵⁴ The **cobas eplex** BCID-GP panel includes two pan targets designed to detect but not differentiate organisms that may be missed by Gram stain.

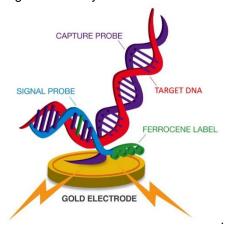
Pan Gram-Negative

The Pan Gram-Negative assay is designed to detect a broad range of gram-negative organisms including those with a potentially misleading Gram stain result. The Pan Gram-Negative assay may provide data to facilitate the correct testing algorithm. If a Pan Gram-Negative target is detected, supplementary testing to determine the identity of the gram-negative organism is recommended.

Pan Candida

The Pan Candida assay is designed to detect four of the most prevalent Candida species: Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis. Since some fungal organisms, like Candida, are known to grow slowly, they may go unnoticed on Gram stains, especially in the case of mixed infection. The Pan Candida target may provide data to facilitate the correct testing algorithm. If the Pan Candida assay is positive, supplementary testing to determine the identity of the Candida species is recommended.

PRINCIPLES OF TECHNOLOGY


The True Sample-to-Answer Solution cobas eplex instrument automates all aspects of nucleic acid testing including extraction, amplification and detection, combining electrowetting and the eSensor® technology in a single-use cartridge. eSensor technology is based on the principles of competitive DNA hybridization and electrochemical detection, which is highly specific and is not based on fluorescent or optical detection.

Electrowetting, or digital microfluidics, uses electrical fields to directly manipulate discrete droplets on the surface of a hydrophobically coated printed circuit board (PCB). Sample and reagents are moved in a programmable fashion in the **cobas eplex** cartridge to complete all portions of the sample processing from nucleic acid extraction to detection.

A sample is loaded into the **cobas eplex** cartridge, and the cartridge is placed into the **cobas eplex** instrument. Nucleic acids are extracted and purified from the specimen via magnetic solid phase extraction. PCR is used to create double-stranded DNA, which is treated with exonuclease to create single-stranded DNA in preparation for eSensor technology detection.

The target DNA is mixed with ferrocene-labeled signal probes that are complementary to the specific targets on the panel. Target DNA hybridizes to its complementary signal probe and capture probes, which are bound to gold-plated electrodes, as shown below in **Figure 1**. The presence of each target is determined by voltammetry which generates specific electrical signals from the ferrocene-labeled signal probe.

Figure 1: Hybridization complex. Target-specific capture probes are bound to the gold electrodes in the eSensor microarray on the **cobas eplex** cartridge. The amplified target DNA hybridizes to the capture probe and to a complementary ferrocene-labeled signal probe. Electrochemical analysis determines the presence or absence of targets using voltammetry.

MATERIALS PROVIDED

Table 2: *The True Sample-to-Answer Solution*® cobas eplex blood culture identification gram-positive panel Box Contents

Product	Material number	Components (quantity)	Storage
cobas eplex blood culture identification gram-positive (BCID-GP) panel	9556508001	cobas eplex BCID-GP panel Cartridge (12)	2–8 °C

Safety Data Sheets (SDS) for all reagents provided in this kit may be obtained at: https://navifyportal.roche.com/. For paper copies, please reach out to your local affiliate: https://www.roche.com/about/business/roche_worldwide.htm.

COMPOSITION OF REAGENTS

Component	Concentration (w/v)					
Salting Buffer						
Guanidine hydrochloride	≤ 45%					
Sodium perchlorate	≤ 14%					
Binding Buffer						
PEG 8000	≤ 20%					
NaH ₂ PO ₄	≤ 1.0%					
EDTA	≤ 0.1%					
NaCl	≤ 5.0%					
NaN ₃	≤ 0.2%					
Cysteamine HCI	≤ 1.0%					
MTG	≤ 1.0%					
Lysis Buffer						
Tris-HCl	≤ 5.0%					
Urea	25% - 50%					
Guanidine hydrochloride	≤ 2.0%					
Calcium Chloride	≤ 1.0%					
SDS	≤ 5.0%					
Tween-20	10% - 20% (v/v)					
Oil Component						
Polydimethylsiloxane, Trimethylsiloxy Terminated, 5 cSt	≥ 95%					

Component	Concentration (w/v)						
Recon/Elution Buffer							
Sodium azide	≤ 0.2%						
Tween-20	≤ 2.0% (v/v)						
Wash Buffer							
PEG 8000	≤ 20%						
NaH₂PO₄	≤ 1.0%						
EDTA	≤ 0.1%						
NaCl	≤ 5.0%						
NaN ₃	≤ 0.2%						
Cysteamine HCI	≤ 1.0%						
MTG	≤ 1.0%						
Tween-20	≤ 2.0% (v/v)						
PCR Reaction							
Tris-HCl	≤ 5.0%						
KCI	≤ 5.0%						
Trehalose	10% - 50%						
Bovine Serum Albumin	≤ .05%						
dNTPs	Trace						
MgCl ₂	≤ 0.1%						
Oligonucleotides	Trace						

Upon receipt, reagents should be stored at 2–8 °C. SDSs are available on request from your local Roche representative or can be accessed via eLabDoc.

REAGENT STORAGE, STABILITY AND HANDLING

- Store the **cobas eplex** BCID-GP panel kit at 2–8 °C.
- Do not use cobas eplex BCID-GP panel kit beyond the expiration date.
- Do not open a cartridge pouch until you are ready to perform testing.

MATERIALS NOT PROVIDED

Equipment

- cobas eplex instrument and software
- Pipettes capable of delivering 50µL
- Vortexer/vortex mixer (optional)
- Printer (optional) See cobas eplex Operator Manual for compatibility guidelines

Consumables

- Pipette tips, aerosol resistant, RNase/DNase-free
- Disposable, powder free gloves
- 10% bleach for appropriate surfaces
- 70% ethanol or isopropyl alcohol (or equivalent) for appropriate surfaces
- 1.5mL RNase/DNase-free microcentrifuge tube or equivalent

WARNINGS AND PRECAUTIONS

General

- For *in vitro* diagnostic use only, by laboratory professionals.
- A trained healthcare professional should carefully interpret the results from the cobas eplex BCID-GP panel in conjunction with a patient's signs and symptoms and results from other diagnostic tests.
- Positive results do not rule out co-infection with other viruses, bacteria, or fungi. The agent(s) detected may not be the definitive cause of disease. The use of additional laboratory testing (e.g., bacterial, fungal and viral culture, immunofluorescence and radiography) and clinical presentation must be taken into consideration in the final diagnosis of a bloodstream infection.
- cobas eplex BCID-GP panel is single use only.
- Do not use reagents beyond the expiration date printed on the labeling.
- Follow the procedure as described in this package insert. Read all instructions before starting the test.
- Inform your local competent authority and the manufacturer about any serious incidents which may occur when using this assay.

Safety

- Handle all specimens and waste materials as if they were capable of transmitting infectious
 agents in accordance with Universal Precautions. Observe safety guidelines such as those
 outlined in CDC/NIH Biosafety in Microbiological and Biomedical Laboratories, CLSI Document
 M29 Protection of Laboratory Workers from Occupationally Acquired Infections, or other
 appropriate guidelines.
- Follow routine laboratory safety procedures for handling of reagents (*e.g.*, do not pipette by mouth, wear appropriate protective clothing and eye protection).
- Follow your institution's safety procedures for handling biological samples.
- Dispose materials used in this test, including reagents, specimens and used vials, in accordance with all federal, state and local regulations.
- Do not stick fingers or other objects inside the **cobas eplex** instrument bays.
- Wash hands thoroughly with soap and water after handling reagents. Launder contaminated clothing prior to re-use.
- Do not puncture or pierce reagent blisters on the cobas eplex cartridge. Reagents may cause irritation to skin, eyes and respiratory tract. Harmful if swallowed or inhaled. Contains oxidizing liquids.
- The cobas eplex BCID-GP panel cartridge contains chemicals that are classified as hazardous. Review the Safety Data Sheet (SDS) before use and in cases of exposure, refer to the SDS for more information. Safety Data Sheets (SDS) are available on request from your local Roche representative or can be accessed via eLabDoc.
- Contamination of the sample may occur if laboratory personnel processing the sample are
 colonized with any number of commensal organisms. To avoid this, specimens should be
 processed in biosafety cabinets utilizing proper personal protective equipment. If a biosafety
 cabinet is not used, a splash shield or face mask should be worn when processing samples.
- Change gloves frequently during testing to reduce the risk of contamination.
- Thoroughly decontaminate the lab and all equipment with 10% bleach followed by 70% ethanol or isopropyl alcohol (or equivalent).

Laboratory

- Contamination of the sample may occur if laboratory personnel processing the sample carry common pathogens and contaminants. To avoid this, specimens should be processed in biosafety cabinets. If a biosafety cabinet is not used, a splash shield or face mask should be used when processing samples.
- A biosafety cabinet that is used for bacterial or fungal culture should not be used for sample preparation.
- Samples and cartridges should be handled and/or tested one at a time. To mitigate the risk of sample-to-sample contamination, change gloves after dispensing sample into the cartridge.
- Thoroughly decontaminate the lab and all equipment with 10% bleach followed by 70% ethanol or isopropyl alcohol (or equivalent) prior to processing a specimen.
- Contamination of the sample may occur if the sample is loaded in an area where PCR amplicons
 are generated. Avoid loading sample in areas that are potentially contaminated with PCR
 amplicon.

SPECIMEN COLLECTION, HANDLING AND STORAGE

- Blood culture bottles should be handled according to manufacturer's recommended procedure.
- Clinical specimens can remain in the incubator for up to 12 hours beyond bottle positivity.
- Clinical specimens can be stored at room temperature for up to 7 days.
- Clinical specimens can be stored at 4°C for up to 1 month.
- Clinical specimens can be stored at -20°C to -80°C for up to 18 months.
- Clinical specimens can be subjected to up to two freeze/thaw cycles.

PROCEDURE

Procedural Notes

- The detection of bacterial or fungal nucleic acid is dependent upon proper specimen collection, handling, transportation, storage and preparation. Failure to observe proper procedures in any one of these steps can lead to incorrect results. There is a risk of both false positive and false negative results due to improperly collected, transported, or handled specimens.
- Not Detected results may occur due to the presence of inhibitors, technical error, sample mix-up, or an infection caused by an organism not detected by the panel
- Samples should be positive blood culture as confirmed by Gram stain.
- Samples, consumables and lab areas should be protected from aerosol or direct contamination with amplicon. Decontaminate laboratory areas and affected equipment with 10% bleach followed by 70% ethanol or isopropyl alcohol (or equivalent).
- Samples should be loaded to cobas eplex BCID-GP panel cartridge in an amplicon-free, clean environment.
- Samples should be processed in biosafety cabinets. If a biosafety cabinet is not used, a splash shield or face mask should be worn when processing samples.
- Change gloves frequently during testing to reduce the risk of contamination.
- Once a cartridge is removed from foil pouch, it should be used within 2 hours. Do not open the
 test cartridge pouch until the sample is ready to be tested.
- All frozen samples should be thawed completely and mixed well before testing.
- The blood culture bottle should be inverted several times to mix.
- Allow approximately 10 seconds for the resin to settle.
- The septum of the positive blood culture bottle should be wiped with 70% ethanol or isopropyl alcohol (or equivalent) prior to withdrawing the sample.
- Use sterile materials for transfer and loading of each sample. Ensure that no part of the transfer device touches the inside of any transfer container that may be used. A shallow vessel such as a 1.5mL microcentrifuge tube is recommended for transfer.
- Once the sample is loaded onto the **cobas eplex** BCID-GP panel cartridge, the sample should be processed within 2 hours.
- Do not insert a wet cartridge into the cobas eplex instrument. If liquid is present on outside of test cartridge, use a low lint lab wipe (e.g. KimwipesTM) to remove liquid prior to inserting into cobas eplex bay.
- Dispose materials used in this test, including reagents, specimens and used vials, in accordance with all regulations.
- Do not re-use cartridges.

Detailed Procedure

- 1. Decontaminate the area used for setting up the **cobas eplex** BCID-GP panel with 10% bleach followed by 70% ethanol or isopropyl alcohol (or equivalent).
- 2. Remove one cobas eplex BCID-GP panel cartridge pouch from packaging.
- 3. Open **cobas eplex** BCID-GP panel cartridge pouch.
- 4. Write the accession ID or place a barcode label with accession ID on the **cobas eplex** BCID-GP panel cartridge.
- 5. Invert the blood culture bottle several times to mix.
- 6. Allow approximately 10 seconds for the resin to settle and proceed immediately to the next step.
- 7. Wipe the septum of the positive blood culture bottle with 70% ethanol or isopropyl alcohol (or equivalent) prior to withdrawing the sample.
- 8. Transfer an aliquot to a 1.5 mL RNase/DNase-free microcentrifuge tube or equivalent. Mix thoroughly (using methods such as vortexing or inverting several times) and proceed immediately to the next step.
- 9. Using a loading device capable of accurately delivering 50µL, aspirate 50µL of blood culture sample and load into the sample loading port of the **cobas eplex** BCID-GP panel cartridge.
- 10. Close the sample loading port immediately by sliding the cap over the port and firmly pushing down on the cap to securely seal the sample delivery port.
 - **NOTE:** Bubbles can be present when closing the cap.
- 11. Scan the **cobas eplex** BCID-GP panel cartridge using the barcode reader provided with the **cobas eplex** instrument.
 - **NOTE:** If an accession ID barcode label is not used, manually enter accession ID with the onscreen keyboard.
 - **NOTE:** The barcode scanner will read both the accession ID barcode (if placed on the cartridge by the operator) and the 2D barcode printed on the cartridge label; however, the barcode scanner will only beep once to indicate that both barcodes have been read.
- 12. Insert the **cobas eplex** BCID-GP panel cartridge into any available bay, indicated by a flashing, white LED light. The test will begin automatically when the cartridge has been inserted into the bay and the pre-run check is completed, as indicated by a blue LED light.

QUALITY CONTROL

Internal Controls

Each cartridge includes internal controls that monitor performance of each step of the testing process, including extraction, amplification and detection of targets.

Each amplification reaction on the cartridge has an internal control and in each reaction either the internal control or a target must generate signal above the defined threshold for a valid test result. Internal control results are interpreted by the **cobas eplex** software and displayed on the **cobas eplex** BCID-GP panel Reports as Internal Control with a result of PASS, FAIL, N/A or INVALID. **Table 3** includes details on the interpretation of Internal Control results.

Table 3: Internal Control Results

Internal Control Result	Explanation	Action
PASS	Signal above threshold has been detected from each amplification reaction.	All results are displayed on the cobas eplex BCID-GP panel Detection Report.
	The test was completed and internal controls were successful, indicating valid results were generated.	Test is valid, report results.
FAIL	Signal above threshold has not been detected from at least one amplification reaction.	No results are displayed on the cobas eplex BCID-GP panel Detection Report.
	The test was completed but internal controls were not detected, indicating that results may not be valid.	Test is not valid, repeat the test using a new cartridge.
N/A	The internal control in every amplification reaction does not generate signal above the threshold, but a target in every amplification reaction does generate signal above the threshold.	All results are displayed on the cobas eplex BCID-GP panel Detection Report.
	The test was completed and internal controls were not successful, however detection of signal above the threshold for a target in every amplification reaction indicates valid results were generated.	Test is valid, report results.
INVALID	An error has occurred during processing that prevents analysis of signal data.	No results are displayed on the cobas eplex BCID-GP panel Detection Report.
INVALID	The test has not successfully completed and results for this test are not valid. This may be due to an instrument or software error.	Test is not valid, repeat the test using a new cartridge.

External Controls

Positive and negative external controls should be tested as part of good laboratory practice, in accordance with the appropriate accrediting organization as applicable and following the user's laboratory standard quality control procedures. Blood culture medium can be used as the negative control. Previously characterized positive samples or blood culture medium spiked with well characterized organisms can be used as the external positive control. External controls should be run in accordance with laboratory protocols and accrediting organizations, as applicable.

RESULTS

Table 4: Interpretation of Results on the cobas eplex BCID-GP panel Detection Report

Target Result	Explanation	Action
Detected	The test was completed successfully and the target has generated signal above its defined threshold and the Internal Control was reported as PASS.	All results are displayed on the cobas eplex BCID-GP panel Detection Report. Test is valid, report results.
Not Detected	The test was completed successfully and the target did not generate signal above its defined threshold and the Internal Control was reported as PASS.	All results are displayed on the cobas eplex BCID-GP panel Detection Report. Test is valid, report results.
N/A	The test was completed successfully and an associated organism for the antibiotic resistance gene target was not detected (see Table 9 for resistance marker organism associations).	All results are displayed on the cobas eplex BCID-GP panel Detection Report. Test is valid, report results.
Invalid	The test has not successfully completed and results for this test are not valid. This may be due to an instrument or software error.	No results are displayed on the cobas eplex BCID-GP panel Detection Report. Test is not valid, repeat test.

Genus and Group Assay Result Interpretation

While many results on the **cobas eplex** BCID-GP panel are based on a single assay, the **cobas eplex** BCID-GP panel uses multiple assays for the *Enterococcus*, *Listeria*, *Staphylococcus* and *Streptococcus* results.

The **cobas eplex** BCID-GP panel *Enterococcus* result is based on three assays: the species-specific *Enterococcus faecalis* and *Enterococcus faecium* assays and a broad *Enterococcus* assay. The broad *Enterococcus* assay will detect *Enterococcus faecalis* and *Enterococcus faecium*, however, its primary purpose is to detect non-*faecalis/faecium Enterococcus* species. If all three assays are negative, the *Enterococcus* result will be Not Detected. If any of the three assays is positive, the *Enterococcus* result will be 'Detected'. If only the *Enterococcus* assay is positive, an unspeciated *Enterococcus* species has been detected. See **Table 5** for detailed *Enterococcus* target call logic.

Table 5: Enterococcus Target Results from cobas eplex BCID-GP panel Detection Report

Enterococcus Result	Enterococcus Assay	Enterococcus faecalis Assay	Enterococcus faecium Assay	Description
Not Detected	Negative	Negative	Negative	No Enterococcus species Detected
Detected	Positive	Positive	Negative	Enterococcus faecalis Detected
Detected	Positive	Negative	Positive	Enterococcus faecium Detected
Detected	Positive	Positive	Positive	Enterococcus faecalis Detected Enterococcus faecium Detected
Detected	Positive	Negative	Negative	Unspeciated Enterococcus Detected

The **cobas eplex** BCID-GP panel *Listeria* result is based on two assays: the species-specific *Listeria* monocytogenes assay and a broad *Listeria* assay. The broad *Listeria* assay will detect multiple *Listeria* species including *Listeria* monocytogenes, however, its primary purpose is to detect non-monocytogenes *Listeria* species. If either assay is positive, the *Listeria* result will be 'Detected'. If only the *Listeria* assay is positive, an unspeciated *Listeria* species has been detected. See **Table 6** for detailed *Listeria* target call logic.

Table 6: Listeria Target Results from cobas eplex BCID-GP panel Detection Report

Listeria Result	Listeria Assay	Listeria monocytogenes Assay	Description
Not Detected	Negative	Negative	No Listeria species Detected
Detected	Positive	Positive	Listeria monocytogenes Detected
Detected	Positive	Negative	Unspeciated Listeria Detected

The **cobas eplex** BCID-GP panel *Staphylococcus* result is based on four assays: the species-specific *Staphylococcus aureus, Staphylococcus epidermidis* and *Staphylococcus lugdunensis* assays and a broad *Staphylococcus* assay. The broad *Staphylococcus* assay will detect each of the species targeted by the species-specific assays, but its primary purpose is to detect other *Staphylococcus* species. If all four assays are negative, the *Staphylococcus* result will be 'Not Detected'. If any of the four assays is positive, the *Staphylococcus* result will be 'Detected'. If only the *Staphylococcus* assay is positive, an unspeciated *Staphylococcus* has been detected. See **Table 7** for detailed *Staphylococcus* target call logic.

Table 7: Staphylococcus Target Results from cobas eplex BCID-GP panel Detection Report

Staphylococcus Result	Staphylococcus Assay	Staphylococcus aureus Assay	Staphylococcus epidermidis Assay	Staphylococcus Iugdunensis Assay	Description
Not Detected	Negative	Negative	Negative	Negative	No Staphylococcus species Detected
Detected	Positive	Positive	Negative	Negative	Staphylococcus aureus Detected
Detected	Positive	Negative	Positive	Negative	Staphylococcus epidermidis Detected
Detected	Positive	Negative	Negative	Positive	Staphylococcus lugdunensis Detected
Detected	Positive	Positive	Positive	Negative	Staphylococcus aureus Detected Staphylococcus epidermidis Detected
Detected	Positive	Positive	Negative	Positive	Staphylococcus aureus Detected Staphylococcus lugdunensis Detected
Detected	Positive	Negative	Positive	Positive	Staphylococcus epidermidis Detected Staphylococcus lugdunensis Detected
Detected	Positive	Positive	Positive	Positive	Staphylococcus aureus Detected Staphylococcus epidermidis Detected Staphylococcus lugdunensis Detected
Detected	Positive	Negative	Negative	Negative	Unspeciated Staphylococcus Detected

The **cobas eplex** BCID-GP panel *Streptococcus* result is based on five assays: the species-specific *Streptococcus agalactiae, Streptococcus anginosus* group, *Streptococcus pneumoniae* and *Streptococcus pyogenes* assays and a broad *Streptococcus* assay. The broad *Streptococcus* assay will detect each of the species targeted by the species-specific assays, but its primary purpose is to detect other *Streptococcus* species. If all five assays are negative, the *Streptococcus* result will be 'Not Detected'. If any of the five assays is positive, the *Streptococcus* result will be 'Detected'. If only the *Streptococcus* assay is positive, an unspeciated *Streptococcus* species has been detected. See **Table 8** for detailed *Streptococcus* target call logic.

Table 8: Streptococcus Target Results from cobas eplex BCID-GP panel Detection Report

	,					paner betechon Keport
Streptococcus Result	Streptococcus Assay	Streptococcus agalactiae Assay	Streptococcus anginosus group Assay	Streptococcus pneumoniae Assay	Streptococcus pyogenes Assay	Description
Not Detected	Negative	Negative	Negative	Negative	Negative	No Streptococcus species Detected
Detected	Positive	Positive	Negative	Negative	Negative	Streptococcus agalactiae Detected
Detected	Positive	Negative	Positive	Negative	Negative	Streptococcus anginosus group Detected
Detected	Positive	Negative	Negative	Positive	Negative	Streptococcus pneumonia Detected
Detected	Positive	Negative	Negative	Negative	Positive	Streptococcus pyogenes Detected
Detected	Positive	Positive	Positive	Negative	Negative	Streptococcus agalactiae Detected Streptococcus anginosus group Detected
Detected	Positive	Positive	Negative	Positive	Negative	Streptococcus agalactiae Detected Streptococcus pneumoniae Detected
Detected	Positive	Positive	Negative	Negative	Positive	Streptococcus agalactiae Detected Streptococcus pyogenes Detected
Detected	Positive	Negative	Positive	Positive	Negative	Streptococcus anginosus group Detected Streptococcus pneumoniae Detected
Detected	Positive	Negative	Positive	Negative	Positive	Streptococcus anginosus group Detected Streptococcus pyogenes Detected
Detected	Positive	Negative	Negative	Positive	Positive	Streptococcus pneumoniae Detected Streptococcus pyogenes Detected
Detected	Positive	Positive	Positive	Positive	Negative	Streptococcus agalactiae Detected Streptococcus anginosus group Detected Streptococcus pneumoniae Detected
Detected	Positive	Positive	Positive	Negative	Positive	Streptococcus agalactiae Detected Streptococcus anginosus group Detected Streptococcus pyogenes Detected
Detected	Positive	Positive	Negative	Positive	Positive	Streptococcus agalactiae Detected Streptococcus pneumoniae Detected Streptococcus pyogenes Detected
Detected	Positive	Negative	Positive	Positive	Positive	Streptococcus anginosus group Detected Streptococcus pneumoniae Detected Streptococcus pyogenes Detected
Detected	Positive	Positive	Positive	Positive	Positive	Streptococcus agalactiae Detected Streptococcus anginosus Detected Streptococcus pneumoniae Detected Streptococcus pyogenes Detected
Detected	Positive	Negative	Negative	Negative	Negative	Unspeciated Streptococcus Detected

Resistance Marker Assay Result Interpretation

Test results for resistance genes are only reported when an associated organism assay is positive in the same sample. See **Table 9** for organisms specifically associated with the four resistance markers on the **cobas eplex** BCID-GP panel.

Table 9: Resistance Marker Organism Associations

Resistance Gene Result	Associated Targets
mecA and/or mecC	Any Staphylococcus assay (Staphylococcus, S. aureus, S. epidermidis, S. lugdunensis)
vanA and/or vanB	Any Enterococcus assay (Enterococcus, E. faecalis, E. faecium)

Pan Assay Results

The **cobas eplex** BCID-GP panel Pan Gram-Negative result is based on a broad assay that covers most gram-negative organisms which include but are not limited to *Acinetobacter, Bacteroides, Enterobacteriaceae, Neisseria, Pseudomonas, Serratia* and *Stenotrophomonas maltophilia*, as shown in **Table 10**.

Table 10: Pan Gram-Negative Target Results from cobas eplex BCID-GP panel Detection Report

Pan Gram-Negative Result	Description						
Not Detected	No gram-negative organism detected.						
Detected	One or more gram-negative organisms detected: including but not limited to Acinetobacter, Bacteroides, Enterobacteriaceae, Neisseria, Pseudomonas, Serratia, Stenotrophomonas maltophilia. Additional testing for identification is recommended.						

The **cobas eplex** BCID-GP panel Pan *Candida* result indicates the presence of one or more of the following *Candida* species targets: *Candida albicans, Candida glabrata, Candida krusei, or Candida parapsilosis* as shown in **Table 11**.

Table 11: Pan Candida Target Results from cobas eplex BCID-GP panel Detection Report

Pan Candida Result	Description					
Not Detected	No specified Candida species detected.					
Detected	One or more of the following <i>Candida</i> organisms has been detected: <i>Candida albicans, Candida glabrata, Candida krusei and</i> /or <i>Candida parapsilosis</i> . Additional testing for identification is recommended.					

TEST REPORTS

Several different reports are available on the **cobas eplex** system. Results are provided in a printable format and may be viewed electronically or exported for additional analysis. Reports can be customized with account specific information such as the address, logo and institutional specific footers on each report. For more information on **cobas eplex** Reports, refer to the **cobas eplex** Operator Manual.

Detection Report

The **cobas eplex** BCID-GP panel Detection Report includes the results for each individual sample run on the **cobas eplex** system. The Summary section indicates the overall test result and lists all detected targets in that sample. The Results section includes a list of all targets on the panel with an individual result for each target. Results are reported as Detected, Not Detected, N/A, or Invalid (displayed as a red x); results for the Internal Control are reported as PASS, FAIL, INVALID, or N/A.

External Control Report

The **cobas eplex** BCID-GP panel External Control Report is generated for an external control that has been pre-defined in the **cobas eplex** BCID-GP panel software. For more information on defining external controls on the **cobas eplex** system, refer to the **cobas eplex** Operator Manual.

The Summary section indicates the overall result (PASS or FAIL status) and lists all detected targets for that external control. The Results section includes a list of all panel targets with the result, expected result and PASS/FAIL status for each. Results are reported as Detected, Not Detected, or Invalid (displayed as a red x). A target is reported as PASS if the actual result matches the expected result (as defined for that control); a target is reported as FAIL if the actual result does not match the expected result. If the actual result for each target matches the expected result (all targets reported as PASS), the overall result for the external control is reported as PASS in the Summary section. If the actual result for any target does not match the expected result, the overall result for the external control is reported as FAIL in the Summary section.

Summary Report

The Summary Report allows the operator to use searchable criteria to create customized reports, using specified targets, dates, range of dates, sample, external control, test bay, or operator. For more information on creating Summary Reports, refer to the **cobas eplex** Operator Manual.

LIMITATIONS OF THE PROCEDURE

- For prescription use only.
- This test is a qualitative test and does not provide a quantitative value.
- This product should not be used with blood culture media that contains charcoal.
- False results were observed for some targets using the BacT Alert FN Plus bottle type (see the Sample Matrix Equivalency (Bottle Evaluation) section of the package insert for additional details) and with a specific lot of BD BACTECTM Plus Anaerobic bottles.
- Bacterial and fungal nucleic acids may be present in blood culture, independent of bacterial or fungal viability. Detection of an assay target does not guarantee that the corresponding bacteria or fungi are infectious or are the causative agents for clinical symptoms.
- There is a risk of false negative results due to the presence of sequence variants in the bacterial
 or fungal targets of the test.
- For some strains within the Corynebacterium, Streptococcus and Pan Candida results, 100% detection was not observed at concentrations expected at bottle positivity. See the Analytical Reactivity (Inclusivity) section for additional details.
- A result of "No Targets Detected" on the cobas eplex BCID-GP panel does not preclude the
 possibility of bacterial or fungal infection. A specimen with a result of No Targets Detected may
 contain an organism not targeted by the cobas eplex BCID-GP panel.

- Antimicrobial resistance can occur via multiple mechanisms. A Not Detected result for the BCID-GP antimicrobial resistance gene assays does not indicate antimicrobial susceptibility.
 Subculturing and standard susceptibility testing of isolates is required to determine antimicrobial susceptibility.
- In mixed cultures, the **cobas eplex** BCID-GP panel may not identify all organisms in the specimen, depending upon the concentration of each target present.
- The results of the cobas eplex BCID-GP panel should not be used as the sole basis for diagnosis, treatment or other patient management decisions.
- Bacillus badius was shown to cross-react with the Bacillus subtilis group assay.
- Burkholderia cepacia was shown to cross-react with the Corynebacterium assay at levels ≥1x10⁷ CFU/mL.
- An unspeciated Rhodococcus strain (ATCC 49988) was shown to cross-react with the Micrococcus assay at levels ≥1x10⁷ CFU/mL.
- Streptococcus pneumoniae may cross react with Streptococcus mitis group species due to potential gene transfer from S. pneumoniae.
- The genus level and group assays included as a part of the BCID-GP panel are designed to
 detect a broad range of species but will not necessarily detect all species within a genus or group.
 For species detected by these assays please refer to the analytical and in silico inclusivity
 sections of this package insert.
- For genus level assays it is possible that an unspeciated target may be masked in the case of a co-infection. For example, in the event that an unspeciated *Staphylococcus* species is present in the same sample as a *Staphylococcus* epidermidis, there is no ability to determine that the unspeciated *Staphylococcus* species is present.

EXPECTED VALUES

A prospective, multicenter clinical study was conducted to evaluate the clinical performance of the **cobas eplex** BCID-GP panel in positive blood culture samples. A total of 711 samples were prospectively collected at 7 clinical sites in 2 phases from patients of all ages and genders. In the first phase from June 2014 through July 2016, 399 samples were prospectively collected and frozen; from January through February 2018, 312 samples were prospectively collected and tested fresh (never frozen). The expected values of individual analytes based on the **cobas eplex** BCID-GP panel results in prospective samples are summarized by age group and by site in **Table 12** and **Table 13** below.

Table 12: Expected Value by Age Group (Prospective Samples)

Target	All Ages (N=711)	Age <1 (N=27)	Age 1-17 (N=42)	Age 18-44 (N=121)	Age 45-64 (N=2500)	Age 65-84 (N=217)	Age 85+ (N=54)
Bacillus cereus group	5 (0.7)	0 (0.0)	0 (0.0)	3 (2.5)	2 (0.8)	0 (0.0)	0 (0.0)
Bacillus subtilis group	2 (0.3)	0 (0.0)	0 (0.0)	1 (0.8)	0 (0.0)	0 (0.0)	1 (1.9)
Corynebacterium	14 (2.0)	1 (3.7)	0 (0.0)	4 (3.3)	5 (2.0)	4 (1.8)	0 (0.0)
Cutibacterium acnes (P. acnes)	8 (1.1)	0 (0.0)	0 (0.0)	3 (2.5)	2 (0.8)	3 (1.4)	0 (0.0)
Enterococcus	62 (8.7)	0 (0.0)	6 (14.3)	8 (6.6)	20 (8.0)	24 (11.1)	4 (7.4)
Enterococcus faecalis	50 (7.0)	0 (0.0)	6 (14.3)	6 (5.0)	15 (6.0)	20 (9.2)	3 (5.6)
Enterococcus faecium	12 (1.7)	0 (0.0)	0 (0.0)	1 (0.8)	6 (2.4)	5 (2.3)	0 (0.0)
Lactobacillus	5 (0.7)	0 (0.0)	0 (0.0)	2 (1.7)	1 (0.4)	1 (0.5)	1 (1.9)
Listeria	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.5)	0 (0.0)
Listeria monocytogenes	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Micrococcus	19 (2.7)	0 (0.0)	3 (7.1)	2 (1.7)	8 (3.2)	5 (2.3)	1 (1.9)
Staphylococcus	452 (63.6)	23 (85.2)	23 (54.8)	78 (64.5)	154 (61.6)	139 (64.1)	35 (64.8)
Staphylococcus aureus	162 (22.8)	8 (29.6)	4 (9.5)	37 (30.6)	69 (27.6)	38 (17.5)	6 (11.1)
Staphylococcus epidermidis	182 (25.6)	10 (37.0)	11 (26.2)	26 (21.5)	54 (21.6)	62 (28.6)	19 (35.2)
Staphylococcus lugdunensis	5 (0.7)	1 (3.7)	0 (0.0)	0 (0.0)	3 (1.2)	0 (0.0)	1 (1.9)
Streptococcus	110 (15.5)	5 (18.5)	9 (21.4)	16 (13.2)	40 (16.0)	31 (14.3)	9 (16.7)
Streptococcus agalactiae	12 (1.7)	1 (3.7)	0 (0.0)	1 (0.8)	5 (2.0)	5 (2.3)	0 (0.0)
Streptococcus anginosus group	10 (1.4)	0 (0.0)	0 (0.0)	2 (1.7)	3 (1.2)	3 (1.4)	2 (3.7)
Streptococcus pneumoniae	28 (3.9)	2 (7.4)	2 (4.8)	3 (2.5)	12 (4.8)	8 (3.7)	1 (1.9)
Streptococcus pyogenes	8 (1.1)	0 (0.0)	0 (0.0)	1 (0.8)	5 (2.0)	2 (0.9)	0 (0.0)
Pan Candida	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Pan Gram-Negative	25 (3.5)	0 (0.0)	4 (9.5)	4 (3.3)	10 (4.0)	6 (2.8)	1 (1.9)
mecA (Staphylococcus)	261 (36.7)	14 (51.9)	10 (23.8)	41 (33.9)	83 (33.2)	94 (43.3)	19 (35.2)
mecA (S. aureus)	86 (12.1)	4 (14.8)	1 (2.4)	17 (14.0)	35 (14.0)	26 (12.0)	3 (5.6)
mecA (S. epidermidis)	137 (19.3)	8 (29.6)	9 (21.4)	19 (15.7)	38 (15.2)	48 (22.1)	15 (27.8)
mecA (S. lugdunensis)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)	0 (0.0)	0 (0.0)
mecA (CoNS excluding S. epidermidis / S. lugdunensis)	40 (5.6)	2 (7.4)	0 (0.0)	6 (5.0)	10 (4.0)	20 (9.2)	2 (3.7)
mecC (Staphylococcus)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
vanA (Enterococcus)	9 (1.3)	0 (0.0)	0 (0.0)	0 (0.0)	6 (2.4)	3 (1.4)	0 (0.0)
vanA (E. faecalis)	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.4)	0 (0.0)	0 (0.0)
vanA (E. faecium)	8 (1.1)	0 (0.0)	0 (0.0)	0 (0.0)	5 (2.0)	3 (1.4)	0 (0.0)
vanB (Enterococcus)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)

Table 13: Expected Value by Collection Site (Prospective Samples)

All Sites Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site									
Target	(N=711)	(N=161)	(N=58)	(N=164)	(N=145)	(N=77)	(N=33)	(N=73)	
Bacillus cereus group	5 (0.7)	3 (1.9)	1 (1.7)	1 (0.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
Bacillus subtilis group	2 (0.3)	0 (0.0)	1 (1.7)	0 (0.0)	0 (0.0)	1 (1.3)	0 (0.0)	0 (0.0)	
Corynebacterium	14 (2.0)	2 (1.2)	2 (3.4)	0 (0.0)	6 (4.1)	2 (2.6)	0 (0.0)	2 (2.7)	
Cutibacterium acnes (P. acnes)	8 (1.1)	1 (0.6)	0 (0.0)	1 (0.6)	2 (1.4)	0 (0.0)	0 (0.0)	4 (5.5)	
Enterococcus	62 (8.7)	20 (12.4)	7 (12.1)	15 (9.1)	9 (6.2)	10 (13.0)	1 (3.0)	0 (0.0)	
Enterococcus faecalis	50 (7.0)	14 (8.7)	6 (10.3)	13 (7.9)	8 (5.5)	8 (10.4)	1 (3.0)	0 (0.0)	
Enterococcus faecium	12 (1.7)	6 (3.7)	1 (1.7)	1 (0.6)	2 (1.4)	2 (2.6)	0 (0.0)	0 (0.0)	
Lactobacillus	5 (0.7)	1 (0.6)	1 (1.7)	2 (1.2)	0 (0.0)	1 (1.3)	0 (0.0)	0 (0.0)	
Listeria	1 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	1 (0.7)	0 (0.0)	0 (0.0)	0 (0.0)	
Listeria monocytogenes	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
Micrococcus	19 (2.7)	2 (1.2)	2 (3.4)	5 (3.0)	6 (4.1)	0 (0.0)	0 (0.0)	4 (5.5)	
Staphylococcus	452 (63.6)	106 (65.8)	27 (46.6)	109 (66.5)	98 (67.6)	52 (67.5)	24 (72.7)	36 (49.3)	
Staphylococcus aureus	162 (22.8)	36 (22.4)	7 (12.1)	56 (34.1)	27 (18.6)	18 (23.4)	6 (18.2)	12 (16.4)	
Staphylococcus epidermidis	182 (25.6)	41 (25.5)	14 (24.1)	34 (20.7)	44 (30.3)	23 (29.9)	13 (39.4)	13 (17.8)	
Staphylococcus lugdunensis	5 (0.7)	0 (0.0)	0 (0.0)	2 (1.2)	2 (1.4)	0 (0.0)	0 (0.0)	1 (1.4)	
Streptococcus	110 (15.5)	18 (11.2)	9 (15.5)	28 (17.1)	20 (13.8)	11 (14.3)	5 (15.2)	19 (26.0)	
Streptococcus agalactiae	12 (1.7)	2 (1.2)	0 (0.0)	2 (1.2)	2 (1.4)	2 (2.6)	2 (6.1)	2 (2.7)	
Streptococcus anginosus group	10 (1.4)	2 (1.2)	0 (0.0)	6 (3.7)	0 (0.0)	2 (2.6)	0 (0.0)	0 (0.0)	
Streptococcus pneumoniae	28 (3.9)	3 (1.9)	5 (8.6)	5 (3.0)	4 (2.8)	1 (1.3)	0 (0.0)	10 (13.7)	
Streptococcus pyogenes	8 (1.1)	1 (0.6)	0 (0.0)	3 (1.8)	1 (0.7)	1 (1.3)	0 (0.0)	2 (2.7)	
Pan <i>Candida</i>	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
Pan Gram-Negative	25 (3.5)	9 (5.6)	4 (6.9)	3 (1.8)	2 (1.4)	5 (6.5)	1 (3.0)	1 (1.4)	
mecA (Staphylococcus)	261 (36.7)	69 (42.9)	17 (29.3)	68 (41.5)	55 (37.9)	25 (32.5)	13 (39.4)	14 (19.2)	
mecA (S. aureus)	86 (12.1)	19 (11.8)	5 (8.6)	28 (17.1)	19 (13.1)	7 (9.1)	3 (9.1)	5 (6.8)	
mecA (S. epidermidis)	137 (19.3)	36 (22.4)	10 (17.2)	31 (18.9)	29 (20.0)	17 (22.1)	8 (24.2)	6 (8.2)	
mecA (S. lugdunensis)	1 (0.1)	0 (0.0)	0 (0.0)	1 (0.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
mecA (CoNS excluding S. epidermidis / S. lugdunensis)	40 (5.6)	15 (9.3)	2 (3.4)	9 (5.5)	7 (4.8)	2 (2.6)	2 (6.1)	3 (4.1)	
mecC (Staphylococcus)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
vanA (Enterococcus)	9 (1.3)	6 (3.7)	0 (0.0)	1 (0.6)	1 (0.7)	1 (1.3)	0 (0.0)	0 (0.0)	
vanA (E. faecalis)	1 (0.1)	1 (0.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
vanA (E. faecium)	8 (1.1)	5 (3.1)	0 (0.0)	1 (0.6)	1 (0.7)	1 (1.3)	0 (0.0)	0 (0.0)	
vanB (Enterococcus)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	

PERFORMANCE CHARACTERISTICS CLINICAL PERFORMANCE

Samples with final, valid **cobas eplex** BCID-GP panel test results and a valid comparator result were evaluable and included in summaries and analyses of demographics, expected values (positivity rate), and performance characteristics. Evaluable samples included 312 prospective fresh and 399 prospective frozen samples as well as 586 retrospective samples and 565 contrived samples.

Comparator Method

The performance of the **cobas eplex** BCID-GP panel was compared to standard laboratory procedures for identification of blood culture isolates, including traditional and automated identification methods, MALDI-TOF IVD, and microbiological and biochemical techniques. Identification for samples with *Corynebacterium*, *Staphylococcus epidermidis*, *Staphylococcus hominis*, or *Candida parapsilosis* identified by standard laboratory procedures was confirmed using analytically validated PCR assays followed by bi-directional sequencing or 16S sequencing. For antibiotic resistance genes, the **cobas eplex** BCID-GP panel was compared to analytically validated qPCR amplification assays followed by bi-directional sequencing in samples with an associated organism identified by culture (i.e., *Staphylococcus*, *Enterococcus*).

The comparator method(s) results were used to determine the Detected / Not Detected status for each target organism on the **cobas eplex** BCID-GP panel. The comparator methods for each target are summarized in **Table 14**.

Table 14: Comparator Method(s) by cobas eplex BCID-GP panel Target

Target	Comparator Method
Bacillus cereus group	
Bacillus subtilis group	
Cutibacterium acnes (Propionibacterium acnes)	
Enterococcus	
Enterococcus faecalis	
Enterococcus faecium	
Lactobacillus	
Listeria	
Listeria monocytogenes	
Micrococcus	Standard laboratory procedures for organism ID.
Staphylococcus	
Staphylococcus aureus	
Staphylococcus lugdunensis	
Streptococcus	
Streptococcus agalactiae	
Streptococcus anginosus group	
Streptococcus pneumoniae	
Streptococcus pyogenes	
Pan Gram-Negative	

Target	Comparator Method
Corynebacterium	Standard laboratory procedures for organism ID. PCR/sequencing and 16S sequencing to confirm (or identify Coryneform) or exclude <i>Corynebacterium</i> species not included in this panel target*.
Staphylococcus epidermidis	Standard laboratory procedures for organism ID. PCR/sequencing to confirm <i>S. epidermidis</i> , <i>S. hominis</i> .
Pan <i>Candida</i>	Standard laboratory procedures for organism ID. PCR/sequencing to confirm <i>C. parapsilosis</i> or identify <i>C. metapsilosis</i> , <i>C. orthopsilosis</i> .
mecA	qPCR/sequencing in samples with Staphylococcus
mecC	identified by comparator method.
vanA vanB	qPCR/sequencing in samples with <i>Enterococcus</i> identified by comparator method.

^{*}The Corynebacterium assay is not designed to detect the following Corynebacterium species: C. amycolatum, C. argentoratense, C. bovis, C. durum, C. glucuronolyticum, C. macginleyi, C. propinquum, C. riegelii, and C. sundsvallense

Demographics of Clinical Samples

Clinical performance was evaluated in positive blood culture samples prospectively and retrospectively collected. Prospective samples were collected at 7 clinical sites in 2 phases. From June 2014 through July 2016, 400 samples were prospectively collected and frozen; from January through February 2018, 319 samples were prospectively collected and tested fresh (never frozen) for a total of 719 samples across the 2 phases. 8 of these samples were withdrawn; 5 due to the sample coming from a patient already enrolled; 1 was collected outside of the required timeframe; 1 was not viable upon subculture and 1 was from an autopsy. Samples with final, valid **cobas eplex** BCID-GP panel results and a valid comparator result were evaluable. Of the 711 prospectively-collected samples eligible for testing, all 711 were evaluable. Demographic information for prospectively-collected samples is described in **Table 15**. Subjects enrolled in this study were from a diverse demographic distribution and represent the intended patient population.

To supplement the number of positives for low prevalence targets in the prospective collection, 586 samples were collected retrospectively, and all 586 were evaluable. Demographic information for retrospectively-collected samples is described in **Table 16**.

Table 15: Demographic Data for Clinical Samples by Collection Site (Prospective Collection)

	All Sites N = 711	Site 1 N = 161	Site 2 N = 58	Site 3 N = 164	Site 4 N = 145	Site 5 N = 77	Site 6 N = 33	Site 7 N = 73
Sex								
Male	377 (53.0)	93 (57.8)	28 (48.3)	91 (55.5)	66 (45.5)	42 (54.5)	17 (51.5)	40 (54.8)
Female	334 (47.0)	68 (42.2)	30 (51.7)	73 (44.5)	79 (54.5)	35 (45.5)	16 (48.5)	33 (45.2)
Age								
<1 yr	27 (3.8)	3 (1.9)	0 (0.0)	8 (4.9)	10 (6.9)	4 (5.2)	2 (6.1)	0 (0.0)
1-17 yrs	42 (5.9)	8 (5.0)	2 (3.4)	11 (6.7)	10 (6.9)	7 (9.1)	2 (6.1)	2 (2.7)
18-44 yrs	121 (17)	32 (19.9)	9 (15.5)	24 (14.6)	24 (16.6)	13 (16.9)	4 (12.1)	15 (20.5)
45-64 yrs	250 (35.2)	66 (41.0)	18 (31.0)	67 (40.9)	36 (24.8)	25 (32.5)	11 (33.3)	27 (37.0)
65-84 yrs	217 (30.5)	44 (27.3)	20 (34.5)	41 (25.0)	51 (35.2)	23 (29.9)	13 (39.4)	25 (34.2)
85+ yrs	54 (7.6)	8 (5.0)	9 (15.5)	13 (7.9)	14 (9.7)	5 (6.5)	1 (3.0)	4 (5.5)

Table 16: Demographic Data for Clinical Samples by Collection Site (Retrospective Collection)

	All Sites N = 586	Site 1 N = 80	Site 2 N = 98	Site 3 N = 51	Site 4 N = 43	Site 5 N = 3	Site 6 N = 61	Site 7 N = 85	Site 8 N = 25	Site 9 N = 46	Site 10 N = 94
Sex											
Male	317 (54.1)	39 (48.8)	59 (60.2)	24 (47.1)	20 (46.5)	1 (33.3)	36 (59.0)	45 (52.9)	17 (68.0)	28 (60.9)	48 (51.1)
Female	269 (45.9)	41 (51.3)	39 (39.8)	27 (52.9)	23 (53.5)	2 (66.7)	25 (41.0)	40 (47.1)	8 (32.0)	18 (39.1)	46 (48.9)
Age											
<1 yr	11 (1.9)	1 (1.3)	2 (2)	0 (0)	3 (7)	0 (0)	1 (1.6)	0 (0)	0 (0)	1 (2.2)	3 (3.2)
1-17 yrs	17 (2.9)	6 (7.5)	1 (1)	0 (0)	4 (9.3)	0 (0)	0 (0)	0 (0)	1 (4)	1 (2.2)	4 (4.3)
18-44 yrs	104 (17.7)	14 (17.5)	13 (13.3)	5 (9.8)	9 (20.9)	0 (0)	15 (24.6)	11 (12.9)	7 (28)	5 (10.9)	25 (26.6)
45-64 yrs	193 (32.9)	25 (31.3)	33 (33.7)	17 (33.3)	15 (34.9)	1 (33.3)	21 (34.4)	30 (35.3)	10 (40)	12 (26.1)	29 (30.9)
65-84 yrs	209 (35.7)	26 (32.5)	42 (42.9)	22 (43.1)	9 (20.9)	0 (0)	20 (32.8)	35 (41.2)	7 (28)	18 (39.1)	30 (31.9)
85+ yrs	50 (8.5)	8 (10)	7 (7.1)	7 (13.7)	3 (7)	2 (66.7)	4 (6.6)	7 (8.2)	0 (0)	9 (19.6)	3 (3.2)
Unknown	2 (0.3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (2.4)	0 (0)	0 (0)	0 (0)

Clinical Performance

Sensitivity or positive percent agreement (PPA) was calculated by dividing the number of true positive (TP) results by the sum of TP and false negative (FN) results, while specificity or negative percent agreement (NPA) was calculated by dividing the number of true negative (TN) results by the sum of TN and false positive (FP) results. A TP result being defined as a sample where the detected **cobas eplex** BCID-GP panel result matched the detected comparator method result, while a TN result was one where a negative **cobas eplex** BCID-GP panel result matched a negative comparator method result. The two-sided 95% confidence interval was also calculated.

A total of 711 prospectively-collected samples (312 tested fresh and 399 tested after previously frozen) and 586 retrospectively collected samples from blood culture bottles flagged positive in a continuously monitoring blood culture system and removed from the system within 8 hours of positivity were evaluated for the **cobas eplex** BCID-GP panel targets. Specimens evaluated were determined to contain grampositive or gram-variable organisms based on Gram stain. A total of 565 contrived samples were prepared by spiking an isolate into a blood culture bottle with human whole blood and growing until flagged positive by a continuously monitoring blood culture system. Contrived samples were removed from the system within 8 hours of positivity and stored frozen until the time of testing. PPA and NPA results are summarized by target in **Tables 17-41** below, and the strains used to contrive samples are summarized in **Table 42**.

Table 17: Clinical Performance for Bacillus cereus group

Toract	Cample Type	Sensit	tivity/PPA	Specificity/NPA		
Target	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective (Fresh)	2/2	100 (34.2-100)	310/310	100 (98.8-100)	
	Prospective (Frozen)	3/3	100 (43.9-100)	396/396	100 (99.0-100)	
	Prospective (All)	5/5	100 (56.6-100)	706/706	100 (99.5-100)	
Bacillus cereus group	Retrospective	6/7	85.7 (48.7-97.4)	579/579	100 (99.3-100)	
	Prospective/Retrospective	11/12	91.7 (64.6-98.5)	1285/1285	100 (99.7-100)	
	Contrived	46/46	100 (92.3-100)	519/519	100 (99.3-100)	
	Overall	57/58	98.3 (90.9-99.7)	1804/1804	100 (99.8-100)	

CI= Confidence Interval

Table 18: Clinical Performance for Bacillus subtilis group

Towart	Comple Tune	Sensit	tivity/PPA	Specificity/NPA		
Target	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective (Fresh)	2/2	100 (34.2-100)	309/309	100 (98.8-100)	
	Prospective (Frozen)	0/0		399/399	100 (99.0-100)	
	Prospective (All)	2/2	100 (34.2-100)	708/708	100 (99.5-100)	
Bacillus subtilis group	Retrospective	0/0		586/586	100 (99.3-100)	
	Prospective/Retrospective	2/2	100 (34.2-100)	1294/1294	100 (99.7-100)	
	Contrived	50/50	100 (92.9-100)	515/515	100 (99.3-100)	
	Overall	52/52	100 (93.1-100)	1809/1809	100 (99.8-100)	

Table 19: Clinical Performance for Corynebacterium

Toront	Comple Tupe	Sensit	tivity/PPA	Specificity/NPA		
Target	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective (Fresh)	5/7	71.4 (35.9-91.8)	304/305	99.7 (98.2-99.9)	
	Prospective (Frozen)	8/12	66.7 (39.1-86.2)	387/387	100 (99.0-100)	
	Prospective (All)	13/19	68.4 (46.0-84.6)	691/692	99.9 (99.2-100)	
Corynebacterium	Retrospective	27/32	84.4 (68.2-93.1)	553/554	99.8 (99.0-100)	
	Prospective/Retrospective	40/51 ^A	78.4 (65.4-87.5)	1244/1246 ^B	99.8 (99.4-100)	
	Contrived	20/20	100 (83.9-100)	545/545	100 (99.3-100)	
	Overall	60/71	84.5 (74.3-91.1)	1789/1791	99.9 (99.6-100)	

A. Corynebacterium was not detected in 4 of the false negative samples using PCR/sequencing, but 16S sequencing instead detected Staphylococcus pettenkoferi, Macrococcus caseolyticus, Lactobacillus fermentum, and Cutibacterium acnes, which were not identified by standard laboratory procedures.

Table 20: Clinical Performance for Cutibacterium acnes

Tourst	Sample Type	Sensit	tivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	4/5	80.0 (37.6-96.4)	306/307	99.7 (98.2-99.9)
	Prospective (Frozen)	2/2	100 (34.2-100)	396/397	99.7 (98.6-100)
	Prospective (All)	6/7	85.7 (48.7-97.4)	702/704	99.7 (99.0-99.9)
Cutibacterium acnes	Retrospective	12/13	92.3 (66.7-98.6)	573/573	100 (99.3-100)
	Prospective/Retrospective	18/20	90.0 (69.9-97.2)	1275/1277 ^A	99.8 (99.4-100)
	Contrived	25/26	96.2 (81.1-99.3)	539/539	100 (99.3-100)
	Overall	43/46	93.5 (82.5-97.8)	1814/1816	99.9 (99.6-100)

A. Cutibacterium acnes was detected in 1/2 false positive samples using PCR/sequencing.

Table 21: Clinical Performance for Enterococcus

Target	Comple Tors	Sensit	ivity/PPA	Specificity/NPA	
	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	25/25	100 (86.7-100)	287/287	100 (98.7-100)
	Prospective (Frozen)	36/36	100 (90.4-100)	362/363	99.7 (98.5-100)
	Prospective (All)	61/61	100 (94.1-100)	649/650	99.8 (99.1-100)
Enterococcus	Retrospective	139/147	94.6 (89.6-97.2)	439/439	100 (99.1-100)
	Prospective/Retrospective	200/208 ^A	96.2 (92.6-98.0)	1088/1089 ^B	99.9 (99.5-100)
	Contrived	126/126	100 (97.0-100)	439/439	100 (99.1-100)
	Overall	326/334	97.6 (95.3-98.8)	1527/1528	99.9 (99.6-100)

A. *Enterococcus* was not detected in 1 false negative sample, but PCR/sequencing instead detected *Lactococcus lactis*, which was not identified by standard laboratory procedures.

B. Corynebacterium was detected in 2/2 false positive samples using PCR/sequencing.

B. Enterococcus was detected in 1/1 false positive samples using PCR/sequencing.

Table 22: Clinical Performance for Enterococcus faecalis

Torget	Sample Type	Sensit	ivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	21/21	100 (84.5-100)	291/291	100 (98.7-100)
	Prospective (Frozen)	28/28	100 (87.9-100)	370/370	100 (99.0-100)
	Prospective (All)	49/49	100 (92.7-100)	661/661	100 (99.4-100)
Enterococcus faecalis	Retrospective	82/90	91.1 (83.4-95.4)	496/496	100 (99.2-100)
	Prospective/Retrospective	131/139 ^A	94.2 (89.1-97.1)	1157/1157	100 (99.7-100)
	Contrived	52/52	100 (93.1-100)	513/513	100 (99.3-100)
	Overall	183/191	95.8 (92.0-97.9)	1670/1670	100 (99.8-100)

A. Enterococcus faecalis was not detected in 4 false negative samples, but PCR/sequencing instead detected Enterococcus faecium (3) and Lactococcus lactis (1), which were not identified by standard laboratory procedures.

Table 23: Clinical Performance for Enterococcus faecium

Toward	Sample Type	Sensit	tivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	3/3	100 (43.9-100)	309/309	100 (98.8-100)
	Prospective (Frozen)	8/9	88.9 (56.5-98.0)	388/389	99.7 (98.6-100)
	Prospective (All)	11/12	91.7 (64.6-98.5)	697/698	99.9 (99.2-100)
Enterococcus faecium	Retrospective	52/53	98.1 (90.1-99.7)	526/533	98.7 (97.3-99.4)
	Prospective/Retrospective	63/65	96.9 (89.5-99.2)	1223/1231 ^A	99.4 (98.7-99.7)
	Contrived	60/60	100 (94.0-100)	505/505	100 (99.2-100)
	Overall	123/125	98.4 (94.4-99.6)	1728/1736	99.5 (99.1-99.8)

A. Enterococcus faecium was detected in 5/8 false positive samples using PCR/sequencing.

Table 24: Clinical Performance for Lactobacillus

Target	Comple Tone	Sensit	tivity/PPA	Specificity/NPA	
	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	2/2	100 (34.2-100)	309/310	99.7 (98.2-99.9)
	Prospective (Frozen)	2/2	100 (34.2-100)	397/397	100 (99.0-100)
	Prospective (All)	4/4	100 (51.0-100)	706/707	99.9 (99.2-100)
Lactobacillus	Retrospective	9/9	100 (70.1-100)	576/577	99.8 (99.0-100)
	Prospective/Retrospective	13/13	100 (77.2-100)	1282/1284 ^A	99.8 (99.4-100)
	Contrived	32/33	97.0 (84.7-99.5)	532/532	100 (99.3-100)
	Overall	45/46	97.8 (88.7-99.6)	1814/1816	99.9 (99.6-100)

A. Lactobacillus casei was detected in 1/2 false positive samples using PCR/sequencing.

Table 25: Clinical Performance for Listeria

Torget	Prospective (Fresh) Prospective (Frozen) Prospective (All) Retrospective Prospective/Retrospective Contrived 74	Sensit	tivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	0/0		312/312	100 (98.8-100)
	Prospective (Frozen)	0/0		398/399	99.7 (98.6-100)
	Prospective (All)	0/0		710/711	99.9 (99.2-100)
Listeria	Retrospective	2/2	100 (34.2-100)	584/584	100 (99.3-100)
	Prospective/Retrospective	2/2	100 (34.2-100)	1294/1295 ^A	99.9 (99.6-100)
	Contrived	74/75	98.7 (92.8-99.8)	490/490	100 (99.2-100)
	Overall	76/77	98.7 (93.0-99.8)	1784/1785	99.9 (99.7-100)

A. Listeria was not detected in the false positive sample using PCR/sequencing.

Table 26: Clinical Performance for Listeria monocytogenes

	, ,				
Torget	Sample Type	Sensit	ivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	0/0		312/312	100 (98.8-100)
	Prospective (Frozen)	0/0		399/399	100 (99.0-100)
	Prospective (All)	0/0		711/711	100 (99.5-100)
Listeria monocytogenes	Retrospective	2/2	100 (34.2-100)	584/584	100 (99.3-100)
monocytogenes	Prospective/Retrospective	2/2	100 (34.2-100)	1295/1295	100 (99.7-100)
	Contrived	46/46	100 (92.3-100)	519/519	100 (99.3-100)
	Overall	48/48	100 (92.6-100)	1814/1814	100 (99.8-100)

Table 27: Clinical Performance for Micrococcus

Torget	Sample Type	Sensit	tivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	9/10	90.0 (59.6-98.2)	302/302	100 (98.7-100)
	Prospective (Frozen)	10/11	90.9 (62.3-98.4)	388/388	100 (99.0-100)
	Prospective (All)	19/21	90.5 (71.1-97.3)	690/690	100 (99.4-100)
Micrococcus	Retrospective	20/23	87.0 (67.9-95.5)	562/563	99.8 (99.0-100)
	Prospective/Retrospective	39/44 ^A	88.6 (76.0-95.0)	1252/1253 ^B	99.9 (99.5-100)
	Contrived	27/27	100 (87.5-100)	538/538	100 (99.3-100)
	Overall	66/71	93.0 (84.6-97.0)	1790/1791	99.9 (99.7-100)

A. *Micrococcus* was not detected in 3 false negative samples, but PCR/sequencing instead detected *Brevibacterium ravenspurgense*, *Nesterenkonia halotolerans*, and *Staphylococcus pettenkoferi*, which were not identified by standard laboratory procedures.

B. Micrococcus was not detected in the false positive sample using PCR/sequencing.

Table 28: Clinical Performance for Staphylococcus

Towart	Sample Type	Sensit	tivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	178/182	97.8 (94.5-99.1)	127/130	97.7 (93.4-99.2)
	Prospective (Frozen)	269/274	98.2 (95.8-99.2)	123/125	98.4 (94.4-99.6)
	Prospective (All)	447/456	98.0 (96.3-99.0)	250/255	98.0 (95.5-99.2)
Staphylococcus	Retrospective	185/191	96.9 (93.3-98.6)	390/395	98.7 (97.1-99.5)
	Prospective/Retrospective	632/647 ^A	97.7 (96.2-98.6)	640/650 ^B	98.5 (97.2-99.2)
	Contrived	105/105	100 (96.5-100)	460/460	100 (99.2-100)
	Overall	737/752	98.0 (96.7-98.8)	1100/1110	99.1 (98.3-99.5)

A. Staphylococcus was not detected in 3 false negative samples, but PCR/sequencing instead detected Escherichia coli, Klebsiella pneumoniae, and Streptococcus salivarius, which were not identified by standard laboratory procedures.

Table 29: Clinical Performance for Staphylococcus aureus

Toward	Os wals Too	Sensitivity/PPA		Specificity/NPA		
Target	Sample Type	TP/TP+FN % (95% CI) 62/65 95.4 (87.3-98.4) 98/101 97.0 (91.6-99.0) 160/166 96.4 (92.3-98.3) 122/125 97.6 (93.2-99.2)	TN/TN+FP	% (95% CI)		
	Prospective (Fresh)	62/65	95.4 (87.3-98.4)	244/245	99.6 (97.7-99.9)	
	Prospective (Frozen)	98/101	97.0 (91.6-99.0)	222/223	99.6 (97.5-99.9)	
	Prospective (All)	160/166	96.4 (92.3-98.3)	466/468	99.6 (98.5-99.9)	
Staphylococcus aureus	Retrospective	122/125	97.6 (93.2-99.2)	454/458	99.1 (97.8-99.7)	
aureus	Prospective/Retrospective	282/291 ^A	96.9 (94.2-98.4)	920/926 ^B	99.4 (98.6-99.7)	
	Contrived	59/59	100 (93.9-100)	506/506	100 (99.2-100)	
	Overall	341/350	97.4 (95.2-98.6)	1426/1432	99.6 (99.1-99.8)	

A. Staphylococcus aureus was not detected in 3 false negative samples, but PCR/sequencing instead detected Klebsiella pneumoniae, Staphylococcus simulans, and Streptococcus agalactiae, which were not identified by standard laboratory procedures.

Table 30: Clinical Performance for Staphylococcus epidermidis

Towart	Sample Type	Sensit	tivity/PPA	Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	59/63	93.7 (84.8-97.5)	223/229	97.4 (94.4-98.8)
	Prospective (Frozen)	56/58	96.6 (88.3-99.0)	258/265	97.4 (94.6-98.7)
0	Prospective (AII)	115/121	95.0 (89.6-97.7)	481/494	97.4 (95.6-98.5)
Staphylococcus epidermidis	Retrospective	33/38	86.8 (72.7-94.2)	539/545	98.9 (97.6-99.5)
еріаетнаіз	Prospective/Retrospective	148/159 ^A	93.1 (88.0-96.1)	1020/1039 ^B	98.2 (97.2-98.8)
	Contrived	1/1	100 (20.7-100)	564/564	100 (99.3-100)
	Overall	149/160	93.1 (88.1-96.1)	1584/1603	98.8 (98.2-99.2)

A. Staphylococcus epidermidis was not detected in 7 false negative samples, but PCR/sequencing instead detected Staphylococcus aureus (4), Staphylococcus capitis (1), Staphylococcus pettenkoferi (1), and Escherichia coli (1), which were not identified by standard laboratory procedures.

B. Staphylococcus was detected in 9/10 false positive samples using PCR/sequencing.

B. Staphylococcus aureus was detected in 5/6 false positive samples using PCR/sequencing.

B. Staphylococcus epidermidis was detected in 3/19 false positive samples using PCR/sequencing.

Table 31: Clinical Performance for Staphylococcus lugdunensis

Target Staphylococcus	Sample Type	Sensit	ivity/PPA	Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	1/1	100 (20.7-100)	290/291	99.7 (98.1-99.9)
	Prospective (Frozen)	1/1	100 (20.7-100)	321/322	99.7 (98.3-99.9)
	Prospective (All)	2/2	100 (34.2-100)	611/613	99.7 (98.8-99.9)
Staphylococcus lugdunensis	Retrospective	4/4	100 (51.0-100)	579/579	100 (99.3-100)
luguunensis	Prospective/Retrospective	6/6	100 (61.0-100)	1190/1192 ^A	99.8 (99.4-100)
	Contrived	45/45	100 (92.1-100)	519/520	99.8 (98.9-100)
	Overall	51/51	100 (93.0-100)	1709/1712	99.8 (99.5-99.9)

A. Staphylococcus lugdunensis was detected in 2/2 false positive samples using PCR/sequencing.

Table 32: Clinical Performance for Streptococcus

Target	Sample Type	Sensitivity/PPA		Specificity/NPA		
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
Streptococcus	Prospective (Fresh)	54/55	98.2 (90.4-99.7)	253/257	98.4 (96.1-99.4)	
	Prospective (Frozen)	49/55	89.1 (78.2-94.9)	341/344	99.1 (97.5-99.7)	
	Prospective (All)	103/110	93.6 (87.4-96.9)	594/601	98.8 (97.6-99.4)	
	Retrospective	171/173	98.8 (95.9-99.7)	411/413	99.5 (98.3-99.9)	
	Prospective/Retrospective	274/283	96.8 (94.1-98.3)	1005/1014 ^A	99.1 (98.3-99.5)	
	Contrived	57/57	100 (93.7-100)	508/508	100 (99.2-100)	
	Overall	331/340	97.4 (95.0-98.6)	1513/1522	99.4 (98.9-99.7)	

A. Streptococcus was detected in 8/9 false positive samples using PCR/sequencing.

Table 33: Clinical Performance for Streptococcus agalactiae

Target	Sample Type	Sensitivity/PPA		Specificity/NPA		
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
Streptococcus agalactiae	Prospective (Fresh)	5/6	83.3 (43.6-97.0)	298/300	99.3 (97.6-99.8)	
	Prospective (Frozen)	5/5	100 (56.6-100)	374/374	100 (99.0-100)	
	Prospective (AII)	10/11	90.9 (62.3-98.4)	672/674	99.7 (98.9-99.9)	
	Retrospective	36/37	97.3 (86.2-99.5)	548/548	100 (99.3-100)	
	Prospective/Retrospective	46/48 ^A	95.8 (86.0-98.8)	1220/1222 ^B	99.8 (99.4-100)	
	Contrived	8/8	100 (67.6-100)	557/557	100 (99.3-100)	
	Overall	54/56	96.4 (87.9-99.0)	1777/1779	99.9 (99.6-100)	

A. Streptococcus agalactiae was not detected in 1 false negative sample, but PCR/sequencing instead detected Streptococcus mitis, which was not identified by standard laboratory procedures.

B. Streptococcus agalactiae was detected in 1/2 false positive samples using PCR/sequencing.

Table 34: Clinical Performance for Streptococcus anginosus group

Target	Sample Type	Sensitivity/PPA		Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	3/3	100 (43.9-100)	303/303	100 (98.7-100)
Streptococcus anginosus group	Prospective (Frozen)	1/2	50.0 (9.5-90.5)	375/377	99.5 (98.1-99.9)
	Prospective (All)	4/5	80.0 (37.6-96.4)	678/680	99.7 (98.9-99.9)
	Retrospective	38/40	95.0 (83.5-98.6)	544/545	99.8 (99.0-100)
	Prospective/Retrospective	42/45 ^A	93.3 (82.1-97.7)	1222/1225 ^B	99.8 (99.3-99.9)
	Contrived	23/23	100 (85.7-100)	542/542	100 (99.3-100)
	Overall	65/68	95.6 (87.8-98.5)	1764/1767	99.8 (99.5-99.9)

A. Streptococcus anginosus group was not detected in 3 false negative samples, but PCR/sequencing instead detected Granulicatella adiacens, Streptococcus dysgalactiae, and Streptococcus lutetiensis, which were not identified by standard laboratory procedures.

Table 35: Clinical Performance for Streptococcus pneumoniae

Target	Sample Type	Sensitivity/PPA		Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	19/19	100 (83.2-100)	286/287	99.7 (98.1-99.9)
Streptococcus pneumoniae	Prospective (Frozen)	8/9	88.9 (56.5-98.0)	370/370	100 (99.0-100)
	Prospective (All)	27/28	96.4 (82.3-99.4)	656/657	99.8 (99.1-100)
	Retrospective	39/41	95.1 (83.9-98.7)	542/543	99.8 (99.0-100)
	Prospective/Retrospective	66/69 ^A	95.7 (88.0-98.5)	1198/1200 ^B	99.8 (99.4-100)
	Contrived	0/0		565/565	100 (99.3-100)
	Overall	66/69	95.7 (88.0-98.5)	1763/1765	99.9 (99.6-100)

A. Streptococcus pneumoniae was not detected in 3 false negative samples, but PCR/sequencing instead detected Streptococcus mitis (2) and Streptococcus anginosus (1), which were not detected by standard laboratory procedures.

Table 36: Clinical Performance for Streptococcus pyogenes

	. ,, ,				
Target	Sample Type	Sensitivity/PPA		Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
Streptococcus pyogenes	Prospective (Fresh)	4/4	100 (51.0-100)	302/302	100 (98.7-100)
	Prospective (Frozen)	4/4	100 (51.0-100)	375/375	100 (99.0-100)
	Prospective (All)	8/8	100 (67.6-100)	677/677	100 (99.4-100)
	Retrospective	19/20	95.0 (76.4-99.1)	564/564	100 (99.3-100)
	Prospective/Retrospective	27/28	96.4 (82.3-99.4)	1241/1241	100 (99.7-100)
	Contrived	26/26	100 (87.1-100)	539/539	100 (99.3-100)
	Overall	53/54	98.1 (90.2-99.7)	1780/1780	100 (99.8-100)

B. Streptococcus intermedius was detected in 1/3 false positive samples using PCR/sequencing.

B. Streptococcus pneumoniae was detected in 1/2 false positive samples using PCR/sequencing.

Table 37: Clinical Performance for mecA

Target	Sample Type	Sensitivity/PPA		Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	86/89	96.6 (90.6-98.8)	85/93	91.4 (83.9-95.6)
	Prospective (Frozen)	164/171	95.9 (91.8-98.0)	101/103	98.1 (93.2-99.5)
	Prospective (All)	250/260	96.2 (93.1-97.9)	186/196	94.9 (90.9-97.2)
mecA Staphylococcus	Retrospective	151/153	98.7 (95.4-99.6)	37/38	97.4 (86.5-99.5)
Staphylococcus	Prospective/Retrospective	401/413 ^A	97.1 (95.0-98.3)	223/234 ^B	95.3 (91.8-97.4)
	Contrived	11/11	100 (74.1-100)	94/94	100 (96.1-100)
	Overall	412/424	97.2 (95.1-98.4)	317/328	96.6 (94.1-98.1
	Prospective (Fresh)	27/28	96.4 (82.3-99.4)	34/37	91.9 (78.7-97.2
	Prospective (Frozen)	56/58	96.6 (88.3-99.0)	43/43	100 (91.8-100)
mecA	Prospective (All)	83/86	96.5 (90.2-98.8)	77/80	96.3 (89.5-98.7
Staphylococcus	Retrospective	107/108	99.1 (94.9-99.8)	16/17	94.1 (73.0-99.0
aureus	Prospective/Retrospective	190/194	97.9 (94.8-99.2)	93/97	95.9 (89.9-98.4
	Contrived	10/10	100 (72.2-100)	49/49	100 (92.7-100)
	Overall	200/204	98.0 (95.1-99.2)	142/146	97.3 (93.2-98.9)
	Prospective (Fresh)	36/36	100 (90.4-100)	24/27	88.9 (71.9-96.1
	Prospective (Frozen)	41/43	95.3 (84.5-98.7)	15/15	100 (79.6-100)
mecA	Prospective (All)	77/79	97.5 (91.2-99.3)	39/42	92.9 (81.0-97.5
Staphylococcus	Retrospective	30/30	100 (88.6-100)	7/8	87.5 (52.9-97.8
epidermidis	Prospective/Retrospective	107/109	98.2 (93.6-99.5)	46/50	92.0 (81.2-96.8
	Contrived	1/1	100 (20.7-100)	0/0	
	Overall	108/110	98.2 (93.6-99.5)	46/50	92.0 (81.2-96.8
	Prospective (Fresh)	0/0		1/1	100 (20.7-100)
mecA Staphylococcus lugdunensis	Prospective (Frozen)	0/0		1/1	100 (20.7-100)
	Prospective (All)	0/0		2/2	100 (34.2-100)
	Retrospective	1/1	100 (20.7-100)	3/3	100 (43.9-100)
	Prospective/Retrospective	1/1	100 (20.7-100)	5/5	100 (56.6-100)
	Contrived	0/0		45/45	100 (92.1-100)
	Overall	1/1	100 (20.7-100)	50/50	100 (92.9-100)

A. Additional testing of the 12 false negative *mecA* samples indicated 2 may have been contaminated during the original extraction process for the comparator method testing and misidentified as having *mecA* present. Specifically, results for the 2 samples were negative for *mecA* from qPCR testing of 2 repeat extractions from the original sample.

B. mecA was detected in 4 of the 7 false positive samples that were tested with an FDA-cleared multiplex assay.

Table 38: Clinical Performance for mecC

_	Sample Type	Sensitivity/PPA		Specificity/NPA	
Target		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	0/0		182/182	100 (97.9-100)
	Prospective (Frozen)	0/0		274/274	100 (98.6-100)
	Prospective (All)	0/0		456/456	100 (99.2-100)
mecC Stanbulgagagus	Retrospective	0/0		191/191	100 (98.0-100)
Staphylococcus	Prospective/Retrospective	0/0		647/647	100 (99.4-100)
	Contrived	49/49	100 (92.7-100)	56/56	100 (93.6-100)
	Overall	49/49	100 (92.7-100)	703/703	100 (99.5-100)
	Prospective (Fresh)	0/0		65/65	100 (94.4-100)
	Prospective (Frozen)	0/0		101/101	100 (96.3-100)
mecC	Prospective (All)	0/0		166/166	100 (97.7-100)
Staphylococcus	Retrospective	0/0		125/125	100 (97.0-100)
aureus	Prospective/Retrospective	0/0		291/291	100 (98.7-100)
	Contrived	49/49	100 (92.7-100)	10/10	100 (72.2-100)
	Overall	49/49	100 (92.7-100)	301/301	100 (98.7-100)
	Prospective (Fresh)	0/0		63/63	100 (94.3-100)
	Prospective (Frozen)	0/0		58/58	100 (93.8-100)
mecC	Prospective (All)	0/0		121/121	100 (96.9-100)
Staphylococcus	Retrospective	0/0		38/38	100 (90.8-100)
epidermidis	Prospective/Retrospective	0/0		159/159	100 (97.6-100)
	Contrived	0/0		1/1	100 (20.7-100)
	Overall	0/0		160/160	100 (97.7-100)
	Prospective (Fresh)	0/0		1/1	100 (20.7-100)
mecC Staphylococcus lugdunensis	Prospective (Frozen)	0/0		1/1	100 (20.7-100)
	Prospective (All)	0/0		2/2	100 (34.2-100)
	Retrospective	0/0		4/4	100 (51.0-100)
	Prospective/Retrospective	0/0		6/6	100 (61.0-100)
	Contrived	0/0		45/45	100 (92.1-100)
	Overall	0/0		51/51	100 (93.0-100)

Table 39: Clinical Performance for vanA

		Sensit	tivity/PPA	Specificity	/NPA
Target	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	0/0		24/25	96.0 (80.5-99.3)
	Prospective (Frozen)	8/8	100 (67.6-100)	28/28	100 (87.9-100)
	Prospective (All)	8/8	100 (67.6-100)	52/53	98.1 (90.1-99.7)
vanA Enterococcus	Retrospective	53/57	93.0 (83.3-97.2)	89/90	98.9 (94.0-99.8)
Enterococcus	Prospective/Retrospective	61/65 ^A	93.8 (85.2-97.6)	141/143 ^B	98.6 (95.0-99.6)
	Contrived	60/60	100 (94.0-100)	66/66	100 (94.5-100)
	Overall	121/125	96.8 (92.1-98.7)	207/209	99.0 (96.6-99.7)
	Prospective (Fresh)	0/0		21/21	100 (84.5-100)
	Prospective (Frozen)	1/1	100 (20.7-100)	27/27	100 (87.5-100)
	Prospective (All)	1/1	100 (20.7-100)	48/48	100 (92.6-100)
vanA Enterococcus faecalis	Retrospective	11/14	78.6 (52.4-92.4)	76/76	100 (95.2-100)
Lillerococcus laecalis	Prospective/Retrospective	12/15	80.0 (54.8-93.0)	124/124	100 (97.0-100)
	Contrived	10/10	100 (72.2-100)	42/42	100 (91.6-100)
	Overall	22/25	88.0 (70.0-95.8)	166/166	100 (97.7-100)
	Prospective (Fresh)	0/0		2/3	66.7 (20.8-93.9)
	Prospective (Frozen)	7/7	100 (64.6-100)	2/2	100 (34.2-100)
	Prospective (All)	7/7	100 (64.6-100)	4/5	80.0 (37.6-96.4)
vanA Enterococcus faecium	Retrospective	44/44	100 (92.0-100)	8/9	88.9 (56.5-98.0)
Emerococus raecium	Prospective/Retrospective	51/51	100 (93.0-100)	12/14	85.7 (60.1-96.0)
	Contrived	50/50	100 (92.9-100)	10/10	100 (72.2-100)
	Overall	101/101	100 (96.3-100)	22/24	91.7 (74.2-97.7)

A. In 2/4 false negative samples, *vanA* signal was above the threshold for detection; however, an associated organism was not detected by the BCID-GP panel and the *vanA* target was reported as 'N/A'. Additional testing of the remaining 2 false negative *vanA* samples indicated they may have been contaminated during the original extraction process for the comparator method testing and misidentified as having *vanA* present. Specifically, results for the 2 samples were negative for *vanA* from qPCR testing of 2 repeat extractions from the original sample (1 of these samples also did not have *vanA* detected when tested with an FDA-cleared multiplex assay).

Table 40: Clinical Performance for vanB

Target	Comple Type	Sensit	ivity/PPA	Specificity/NPA		
	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective (Fresh)	0/0		25/25	100 (86.7-100)	
	Prospective (Frozen)	0/0		36/36	100 (90.4-100)	
	Prospective (AII)	0/0		61/61	100 (94.1-100)	
vanB Enterococcus	Retrospective	1/1	100 (20.7-100)	146/146	100 (97.4-100)	
Linerococcus	Prospective/Retrospective	1/1	100 (20.7-100)	207/207	100 (98.2-100)	
	Contrived	52/52	100 (93.1-100)	74/74	100 (95.1-100)	
	Overall	53/53	100 (93.2-100)	281/281	100 (98.7-100)	

B. vanA was detected in the 1 false positive sample that was tested using an FDA-cleared multiplex assay.

Torget	Comple Type	Sensit	ivity/PPA	Specificity/NPA		
Target	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective (Fresh)	0/0		21/21	100 (84.5-100)	
	Prospective (Frozen)	0/0		28/28	100 (87.9-100)	
D	Prospective (All)	0/0		49/49	100 (92.7-100)	
vanB Enterococcus faecalis	Retrospective	1/1	100 (20.7-100)	89/89	100 (95.9-100)	
Linerococcus raecans	Prospective/Retrospective	1/1	100 (20.7-100)	138/138	100 (97.3-100)	
	Contrived	42/42	100 (91.6-100)	10/10	100 (72.2-100)	
	Overall	43/43	100 (91.8-100)	148/148	100 (97.5-100)	
	Prospective (Fresh)	0/0		3/3	100 (43.9-100)	
	Prospective (Frozen)	0/0		9/9	100 (70.1-100)	
	Prospective (All)	0/0		12/12	100 (75.8-100)	
vanB Enterococcus faecium	Retrospective	0/0		53/53	100 (93.2-100)	
	Prospective/Retrospective	0/0		65/65	100 (94.4-100)	
	Contrived	10/10	100 (72.2-100)	50/50	100 (92.9-100)	
	Overall	10/10	100 (72.2-100)	115/115	100 (96.8-100)	

Pan Targets

In addition to the evaluable prospective and retrospective samples that contain gram-positive organisms, the clinical performance of the Pan *Candida* and Pan Gram-Negative targets was evaluated by testing an additional 480 non-intended use retrospective samples with gram-negative or fungal organisms; these are denoted as Retrospective (Non-Intended Use) samples. Results from those samples are summarized in **Table 41** below.

Table 41: Clinical Performance for Pan Targets

Torract	Compute Time	Sensit	tivity/PPA	Specificity/NPA	
Target	Sample Type	TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective (Fresh)	0/0		312/312	100 (98.8-100)
	Prospective (Frozen)	0/0		399/399	100 (99.0-100)
Dan Candida	Prospective (All)	0/0		711/711	100 (99.5-100)
Pan <i>Candida</i>	Retrospective	7/9 ^A	77.8 (45.3-93.7)	576/577	99.8 (99.0-100)
	Retrospective (Non-Intended Use)	90/96 ^B	93.8 (87.0-97.1)	383/384 ^C	99.7 (98.5-100)
	Contrived	0/0		565/565	100 (99.3-100)
	Prospective (Fresh)	10/11	90.9 (62.3-98.4)	299/301	99.3 (97.6-99.8)
	Prospective (Frozen)	12/12	100 (75.8-100)	386/387	99.7 (98.6-100)
Pan Gram-	Prospective (All)	22/23	95.7 (79.0-99.2)	685/688 ^D	99.6 (98.7-99.9)
Negative	Retrospective	36/43 ^E	83.7 (70.0-91.9)	540/543 ^F	99.4 (98.4-99.8)
	Retrospective (Non-Intended Use)	364/375	97.1 (94.8-98.4)	104/105	99.0 (94.8-99.8)
	Contrived	0/0		565/565	100 (99.3-100)

A. 2 of 2 (100%) false negative results occurred in samples in mixed infections with bacterial organisms where the BCID-GP panel results were correct for the other infections in these samples.

- B. 2 of 6 (33%) false negative results occurred in samples in mixed infections with bacterial organisms where the BCID-GP panel results were correct for the other infections in these samples.
- C. Candida glabrata was detected in 1/1 false positive samples using PCR/sequencing.
- D. A gram-negative organism, Klebsiella pneumoniae, was detected in 1/3 false positive samples using PCR/sequencing.
- E. 7 of 7 (100%) false negative results occurred in samples in mixed infections with bacterial organisms where the BCID-GP panel correctly detected a gram-positive organism.
- F. A gram-negative organism, Escherichia coli, was detected in 1/3 false positive samples using PCR/sequencing.

Table 42: Contrived Sample Summary

	Table 42: Contrived 8		Independent Contrived
Target	Organism	Strain	Samples Tested
-		ATCC 10876	11
	Bacillus cereus	ATCC 21769	10
	Dacillus Cereus	ATCC 31430	9
Bacillus cereus		ATCC 53522	10
group		ATCC 33679	1
	Bacillus thuringiensis	ATCC 10792	2
		ATCC 55173	3
	Bacillus cereus group total		46
		ATCC 23350	3
	Bacillus amyloliquefaciens	ATCC 23845	4
		ATCC 53495	3
		ATCC 51189	4
	Bacillus atrophaeus	ATCC 6455	3
Bacillus subtilis		ATCC 6537	4
		ATCC 21039	3
group	Bacillus licheniformis	ATCC 21667	3
		ATCC 53926	4
		ATCC 15040	5
	Bacillus subtilis	ATCC 15561	8
		ATCC 55614	6
	Bacillus subtilis group total	50	
	Corynebacterium coyleae	ATCC 700219	7
Commobootorium	Corynebacterium falsenii	ATCC BAA-596	9
Corynebacterium	Corynebacterium striatum	ATCC BAA-1293	4
	Corynebacterium total		20
	Enterococcus faecalis, vanA	JMI 876745	10
		ATCC 51299	11
	Futamana and famalia was B	ATCC 51575	11
	Enterococcus faecalis, vanB	ATCC 700802	10
		ATCC BAA-2365	10
		ATCC 51559	4
		ATCC 700221	3
Entorossassas		ATCC BAA-2316	5
Enterococcus		ATCC BAA-2317	3
		ATCC BAA-2318	5
	Enterococcus faecium, vanA	ATCC BAA-2319	5
		ATCC BAA-2320	3
		LMC 002867	3
		LMC 003921	4
		LMC 032261	4
		LMC 055971	3

Target	Organism	Strain	Independent Contrived Samples Tested
		LMC 103676	5
		LMC 104266	3
	Enterococcus faecium, vanB	ATCC 51858	10
	Enterococcus flavescens	ATCC 49996	3
	Finta va a a a a una quallina vi una	ATCC 49610	1
	Enterococcus gallinarum	ATCC 700425	3
	Enterococcus hirae	ATCC 10541	1
	Enterococcus malodoratus	ATCC 43197	3
	Enterococcus raffinosus	ATCC 49464	2
	Enterococcus saccharolyticus	ATCC 43076	1
	Enterococcus total		126
		ATCC 25598	2
	Lactobacillus casei	ATCC 334	6
		ATCC 39392	4
		148-260 *	3
	Lactobacillus paracasei	ATCC 27092	2
Lactobacillus		ATCC BAA-52	6
		ATCC 39595	3
	Lactobacillus rhamnosus	ATCC 53103	5
	Lactobacillas maminosas	ATCC 55915	2
	Lactobacillus total	33	
	Lactobaciiias totai	ATCC 33090	4
	Listeria innocua	NCTC 11288	
			5
	Listania irranardi	ATCC 700403	2
I to to uto	Listeria ivanovii	ATCC 700402	4
Listeria		ATCC BAA-139	4
		ATCC 13932	5
		ATCC 19111	3
		ATCC 19112	4
		ATCC 19114	5
	Listeria monocytogenes	ATCC 19116	5
		ATCC 19117	5
		ATCC 19118	5
		ATCC 7644	5
Listeria		ATCC BAA-751	5
		NCTC 10890	4
	Listeria seeligeri	ATCC 35967	5
	Listeria welshimeri	ATCC 35897	5
	Listeria total		75
		ATCC 10240	3
		ATCC 19212	3
	Micrococcus luteus	ATCC 400	3
	WIIO OCOCCUS IULGUS	ATCC 4698	3
Micrococcus		ATCC 49732	3
		ATCC 53598	4
	Micrococcus lylae	ATCC 27566	4
	Micrococcus yunnanensis	ATCC 7468	4
	Micrococcus total		27

Target	Organism	Strain	Independent Contrived Samples Tested
		ATCC 11827	8
Cutibacterium	Cutile a stanium a ana a	ATCC 11828	6
acnes	Cutibacterium acnes	ATCC 33179	4
acries		ATCC 6919	8
	Cutibacterium acnes total		26
		ATCC 33591	3
	Staphylococcus aureus, mecA	ATCC BAA-44	5
		NCTC 12493	2
	Stanbulges and automatic many	ATCC BAA-2312	23
	Staphylococcus aureus, mecC	ATCC BAA-2313	26
Ctambulasasaus	Staphylococcus epidermidis, mecA	ATCC 35984	1
Staphylococcus		ATCC 49576	9
		NRS 878	9
	Staphylococcus lugdunensis	NRS 879	9
		NRS 880	9
		NRS 881	9
	Staphylococcus total	105	
		ATCC 12403	2
	Ctromtococcus analastics	ATCC 12973	2
	Streptococcus agalactiae	ATCC 13813	2
		ATCC 27956	2
		ATCC 700231	5
	Streptococcus anginosus	ATCC 9895	3
Ctrontococcus		NCTC 10713	5
Streptococcus	Ctrontococcus constellatus	ATCC 27513	4
	Streptococcus constellatus	ATCC 27823	2
	Streptococcus intermedius	ATCC 27335	4
		ATCC 12344	5
		ATCC 12384	4
	Strantoggggggggggggggg	ATCC 14289	4
	Streptococcus pyogenes	ATCC 19615	4
	7	ATCC 49399	5
Streptococcus		NCIMB 13285	4

^{*}Derived from clinical specimen

Genus and Group Assay Species Stratification

The **cobas eplex** BCID-GP panel reports genus or group level results for *Bacillus cereus* group, *Bacillus subtilis* group, *Corynebacterium*, *Enterococcus*, *Lactobacillus*, *Listeria*, *Micrococcus*, *Staphylococcus*, *Streptococcus*, *Streptococcus anginosus* group, Pan Gram-Negative and Pan *Candida* targets. Sensitivity/PPA of these genus and group level targets for species as determined by comparator methods for all evaluable samples tested are summarized in **Table 43** and for the Pan targets for non-intended use samples in **Table 44**.

Table 43: Species Detected in Genus and Group Assays by Comparator Methods

1 45.5	•			•		•	Table 43. Species Detected in Genus and Group Assays by Comparator Methods				
Target		sitivity/PPA ospective)		sitivity/PPA rospective)		sitivity/PPA contrived)		sitivity/PPA ombined)			
Species detected by Comparator Method	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)			
Bacillus cereus group	5/5	100 (56.6-100)	6/7	85.7 (48.7-97.4)	46/46	100 (92.3-100)	57/58	98.3 (90.9-99.7)			
Bacillus cereus	3/3	100 (43.9-100)	6/7	85.7 (48.7-97.4)	40/40	100 (91.2-100)	49/50	98.0 (89.5-99.6)			
Bacillus thuringiensis	2/2	100 (34.2-100)	-	-	6/6	100 (61.0-100)	8/8	100 (67.6-100)			
Bacillus subtilis group	2/2	100 (34.2-100)	-	-	50/50	100 (92.9-100)	52/52	100 (93.1-100)			
Bacillus amyloliquefaciens	1/1	100 (20.7-100)	-	-	10/10	100 (72.2-100)	11/11	100 (74.1-100)			
Bacillus atrophaeus	-	-	-	-	11/11	100 (74.1-100)	11/11	100 (74.1-100)			
Bacillus licheniformis	-	-	-	-	10/10	100 (72.2-100)	10/10	100 (72.2-100)			
Bacillus subtilis	1/1	100 (20.7-100)	-	-	19/19	100 (83.2-100)	20/20	100 (83.9-100)			
Corynebacterium	13/19	68.4 (46.0-84.6)	27/32	84.4 (68.2-93.1)	20/20	100 (83.9-100)	60/71	84.5 (74.3-91.1)			
Corynebacterium	4/9	44.4 (18.9-73.3)	5/7	71.4 (35.9-91.8)	-	-	9/16	56.3 (33.2-76.9)			
Corynebacterium afermentans	0/1	0.0 (0.0-79.3)	3/3	100 (43.9-100)	-	-	3/4	75.0 (30.1-95.4)			
Corynebacterium amycolatum*	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)			
Corynebacterium aurimucosum	1/1	100 (20.7-100)	1/1	100 (20.7-100)	-	-	2/2	100 (34.2-100)			
Corynebacterium casei	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)			
Corynebacterium coyleae	1/1	100 (20.7-100)	2/2	100 (34.2-100)	7/7	100 (64.6-100)	10/10	100 (72.2-100)			
Corynebacterium falsenii	-	-	-	-	9/9	100 (70.1-100)	9/9	100 (70.1-100)			
Corynebacterium imitans	2/2	100 (34.2-100)	2/2	100 (34.2-100)	-	-	4/4	100 (51.0-100)			
Corynebacterium jeikeium	-	-	4/5	80.0 (37.6-96.4)	-	-	4/5	80.0 (37.6-96.4)			
Corynebacterium kroppenstedtii	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)			
Corynebacterium matruchotii	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)			
Corynebacterium mucifaciens	1/1	100 (20.7-100)	2/2	100 (34.2-100)	-	-	3/3	100 (43.9-100)			
Corynebacterium pseudotuberculosis	-	-	0/1	0.0 (0.0-79.3)	-	-	0/1	0.0 (0.0-79.3)			
Corynebacterium striatum	1/1	100 (20.7-100)	6/6	100 (61.0-100)	4/4	100 (51.0-100)	11/11	100 (74.1-100)			
Corynebacterium tuberculostearicum	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)			
Corynebacterium urealyticum	-	-	0/1	0.0 (0.0-79.3)	-	-	0/1	0.0 (0.0-79.3)			

Target Species detected by Comparator		sitivity/PPA ospective)		sitivity/PPA rospective)		sitivity/PPA contrived)	Sensitivity/PPA (Combined)	
Method	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)
Enterococcus	61/61	100 (94.1-100)	139/147	94.6 (89.6-97.2)	126/126	100 (97.0-100)	326/334	97.6 (95.3-98.8)
Enterococcus	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Enterococcus avium	1/1	100 (20.7-100)	2/3	66.7 (20.8-93.9)	-	-	3/4	75.0 (30.1-95.4)
Enterococcus casseliflavus	-	-	0/1	0.0 (0.0-79.3)	-	-	0/1	0.0 (0.0-79.3)
Enterococcus casseliflavus / gallinarum	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Enterococcus faecalis	49/49	100 (92.7-100)	85/90	94.4 (87.6-97.6)	52/52	100 (93.1-100)	186/191	97.4 (94.0-98.9)
Enterococcus faecium	12/12	100 (75.8-100)	52/53	98.1 (90.1-99.7)	60/60	100 (94.0-100)	124/125	99.2 (95.6-99.9)
Enterococcus flavescens	-	-	-	-	3/3	100 (43.9-100)	3/3	100 (43.9-100)
Enterococcus gallinarum	-	-	2/2	100 (34.2-100)	4/4	100 (51.0-100)	6/6	100 (61.0-100)
Enterococcus hirae	-	-	-	-	1/1	100 (20.7-100)	1/1	100 (20.7-100)
Enterococcus malodoratus	-	-	-	-	3/3	100 (43.9-100)	3/3	100 (43.9-100)
Enterococcus raffinosus	-	-	-	-	2/2	100 (34.2-100)	2/2	100 (34.2-100)
Enterococcus saccharolyticus	-	-	-	-	1/1	100 (20.7-100)	1/1	100 (20.7-100)
Lactobacillus	4/4	100 (51.0-100)	9/9	100 (70.1-100)	32/33	97.0 (84.7-99.5)	45/46	97.8 (88.7-99.6)
Lactobacillus casei	-	-	1/1	100 (20.7-100)	12/12	100 (75.8-100)	13/13	100 (77.2-100)
Lactobacillus paracasei	1/1	100 (20.7-100)	-	-	11/11	100 (74.1-100)	12/12	100 (75.8-100)
Lactobacillus rhamnosus	2/2	100 (34.2-100)	8/8	100 (67.6-100)	9/10	90.0 (59.6-98.2)	19/20	95.0 (76.4-99.1)
Lactobacillus zeae	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Listeria	-	-	2/2	100 (34.2-100)	74/75	98.7 (92.8-99.8)	76/77	98.7 (93.0-99.8)
Listeria innocua	-	-	-	-	9/9	100 (70.1-100)	9/9	100 (70.1-100)
Listeria ivanovii	_	-	-	-	9/10	90.0 (59.6-98.2)	9/10	90.0 (59.6-98.2)
Listeria monocytogenes	-	-	2/2	100 (34.2-100)	46/46	100 (92.3-100)	48/48	100 (92.6-100)
Listeria seeligeri	-	-	-	-	5/5	100 (56.6-100)	5/5	100 (56.6-100)
Listeria welshimeri	-	-	-	-	5/5	100 (56.6-100)	5/5	100 (56.6-100)
Micrococcus	19/21	90.5 (71.1-97.3)	20/23	87.0 (67.9-95.5)	27/27	100 (87.5-100)	66/71	93.0 (84.6-97.0)
Micrococcus	8/9	88.9 (56.5-98.0)	10/13	76.9 (49.7-91.8)		-	18/22	81.8 (61.5-92.7)
Micrococcus luteus	9/9	100 (70.1-100)	8/8	100 (67.6-100)	19/19	100 (83.2-100)	36/36	100 (90.4-100)
Micrococcus luteus/lylae	2/3	66.7 (20.8-93.9)	2/2	100 (34.2-100)	-	-	4/5	80.0 (37.6-96.4)
Micrococcus lylae		-		-	4/4	100 (51.0-100)	4/4	100 (51.0-100)
Micrococcus yunnanensis	_	_	_	_	4/4	100 (51.0-100)	4/4	100 (51.0-100)
Staphylococcus	447/456	98.0 (96.3-99.0)	185/191	96.9 (93.3-98.6)	105/105	100 (96.5-100)	737/752	98.0 (96.7-98.8)
Coagulase-negative			103/131	30.3 (33.3-30.0)	103/103	100 (30.3-100)		
staphylococci (CoNS) CoNS (Not S. epidermidis, S.	18/18 2/2	100 (82.4-100) 100 (34.2-100)	-	-	-	-	18/18 2/2	100 (82.4-100) 100 (34.2-100)
lugdunensis)			-	-	-	-		
Staphylococcus	74/78	94.9 (87.5-98.0)	1/3	33.3 (6.1-79.2)	-	-	75/81	92.6 (84.8-96.6)
Staphylococcus aureus	158/160	98.8 (95.6-99.7)	121/123	98.4 (94.3-99.6)	59/59	100 (93.9-100)	338/342	98.8 (97.0-99.5)
Staphylococcus aureus subsp. aureus	6/6	100 (61.0-100)	2/2	100 (34.2-100)	-	-	8/8	100 (67.6-100)
Staphylococcus auricularis	2/2	100 (34.2-100)	2/2	100 (34.2-100)	-	-	4/4	100 (51.0-100)
Staphylococcus capitis	14/14	100 (78.5-100)	7/7	100 (64.6-100)	-	-	21/21	100 (84.5-100)
Staphylococcus carnosus subsp. carnosus	-	-	0/1	0.0 (0.0-79.3)	-	-	0/1	0.0 (0.0-79.3)
Staphylococcus cohnii	1/2	50.0 (9.5-90.5)	-	-	-	-	1/2	50.0 (9.5-90.5)

Target Species detected by Comparator		sitivity/PPA ospective)		sitivity/PPA rospective)		sitivity/PPA contrived)		sitivity/PPA ombined)
Method	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)
Staphylococcus epidermidis	117/121	96.7 (91.8-98.7)	37/38	97.4 (86.5-99.5)	1/1	100 (20.7-100)	155/160	96.9 (92.9-98.7)
Staphylococcus haemolyticus	6/6	100 (61.0-100)	2/2	100 (34.2-100)	-	-	8/8	100 (67.6-100)
Staphylococcus hominis	24/24	100 (86.2-100)	13/13	100 (77.2-100)	-	-	37/37	100 (90.6-100)
Staphylococcus hominis subsp. hominis	22/22	100 (85.1-100)	5/5	100 (56.6-100)	-	-	27/27	100 (87.5-100)
Staphylococcus hominis subsp. novobiosepticus	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Staphylococcus lugdunensis	2/2	100 (34.2-100)	4/4	100 (51.0-100)	45/45	100 (92.1-100)	51/51	100 (93.0-100)
Staphylococcus pettenkoferi	2/2	100 (34.2-100)	-	-	-	-	2/2	100 (34.2-100)
Staphylococcus saccharolyticus	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Staphylococcus saprophyticus	1/1	100 (20.7-100)	1/1	100 (20.7-100)	-	-	2/2	100 (34.2-100)
Staphylococcus schleiferi	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Staphylococcus simulans	3/3	100 (43.9-100)	-	-	-	-	3/3	100 (43.9-100)
Staphylococcus warneri	4/4	100 (51.0-100)	-	-	-	-	4/4	100 (51.0-100)
Streptococcus	103/110	93.6 (87.4-96.9)	171/173	98.8 (95.9-99.7)	57/57	100 (93.7-100)	331/340	97.4 (95.0-98.6)
Alpha Hemolytic Streptococcus	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Gamma Hemolytic Streptococcus	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Streptococcus	5/7	71.4 (35.9-91.8)	-	-	-	-	5/7	71.4 (35.9-91.8)
Streptococcus (Group G)	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Streptococcus agalactiae	10/11	90.9 (62.3-98.4)	37/37	100 (90.6-100)	8/8	100 (67.6-100)	55/56	98.2 (90.6-99.7)
Streptococcus anginosus	1/1	100 (20.7-100)	13/13	100 (77.2-100)	13/13	100 (77.2-100)	27/27	100 (87.5-100)
Streptococcus anginosus group	4/4	100 (51.0-100)	22/22	100 (85.1-100)	-	-	26/26	100 (87.1-100)
Streptococcus bovis	-	-	2/2	100 (34.2-100)	-	-	2/2	100 (34.2-100)
Streptococcus bovis group	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Streptococcus constellatus	-	-	-	-	6/6	100 (61.0-100)	6/6	100 (61.0-100)
Streptococcus constellatus subsp. constellatus	-	-	2/2	100 (34.2-100)	-	-	2/2	100 (34.2-100)
Streptococcus constellatus subsp. pharyngis	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Streptococcus dysgalactiae	-	-	2/2	100 (34.2-100)	-	-	2/2	100 (34.2-100)
Streptococcus dysgalactiae (Group G)	4/4	100 (51.0-100)	1/1	100 (20.7-100)	-	-	5/5	100 (56.6-100)
Streptococcus gallolyticus	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Streptococcus gordonii	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Streptococcus infantarius	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Streptococcus intermedius	-	-	2/2	100 (34.2-100)	4/4	100 (51.0-100)	6/6	100 (61.0-100)
Streptococcus mitis	9/10	90.0 (59.6-98.2)	14/15	93.3 (70.2-98.8)	-	-	23/25	92.0 (75.0-97.8)
Streptococcus mitis group	10/10	100 (72.2-100)	-	-	-	-	10/10	100 (72.2-100)
Streptococcus mutans	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Streptococcus oralis	-	-	3/3	100 (43.9-100)	-	-	3/3	100 (43.9-100)
Streptococcus parasanguinis	2/2	100 (34.2-100)	4/4	100 (51.0-100)	-	-	6/6	100 (61.0-100)
Streptococcus pneumoniae	28/28	100 (87.9-100)	41/41	100 (91.4-100)	-	-	69/69	100 (94.7-100)
Streptococcus pyogenes	8/8	100 (67.6-100)	19/20	95.0 (76.4-99.1)	26/26	100 (87.1-100)	53/54	98.1 (90.2-99.7)
Streptococcus salivarius	4/4	100 (51.0-100)	5/5	100 (56.6-100)	-	-	9/9	100 (70.1-100)
Streptococcus vestibularis	-	- -	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)

Target Species detected by Comparator		sitivity/PPA ospective)		sitivity/PPA rospective)		sitivity/PPA ontrived)	Sensitivity/PPA (Combined)	
Method	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)	TP/ TP+FN	% (95% CI)
Streptococcus viridans group	14/17	82.4 (59.0-93.8)	2/2	100 (34.2-100)	=	-	16/19	84.2 (62.4-94.5)
Streptococcus anginosus group	4/5	80.0 (37.6-96.4)	38/40	95.0 (83.5-98.6)	23/23	100 (85.7-100)	65/68	95.6 (87.8-98.5)
Streptococcus anginosus	0/1	0.0 (0.0-79.3)	12/13	92.3 (66.7-98.6)	13/13	100 (77.2-100)	25/27	92.6 (76.6-97.9)
Streptococcus anginosus group	4/4	100 (51.0-100)	21/22	95.5 (78.2-99.2)	-	-	25/26	96.2 (81.1-99.3)
Streptococcus constellatus	-	-	-	-	6/6	100 (61.0-100)	6/6	100 (61.0-100)
Streptococcus constellatus subsp. constellatus	-	-	2/2	100 (34.2-100)	-	-	2/2	100 (34.2-100)
Streptococcus constellatus subsp. pharynges	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Streptococcus intermedius	-	-	2/2	100 (34.2-100)	4/4	100 (51.0-100)	6/6	100 (61.0-100)
Pan Candida	-	-	7/9	77.8 (45.3-93.7)	-	-	7/9	77.8 (45.3-93.7)
Candida albicans	-	-	4/4	100 (51.0-100)	-	-	4/4	100 (51.0-100)
Candida glabrata	-	-	1/2	50 (9.5-90.5)	-	-	1/2	50 (9.5-90.5)
Candida krusei	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Candida parapsilosis	-	-	1/2	50 (9.5-90.5)	-	-	1/2	50 (9.5-90.5)
Pan Gram-Negative	22/23	95.7 (79.0-99.2)	36/43	83.7 (70.0-91.9)	-	-	58/66	87.9 (77.9-93.7)
Acinetobacter baumannii	3/3	100 (43.9-100)	2/4	50.0 (15.0-85.0)	-	-	5/7	71.4 (35.9-91.8)
Acinetobacter Iwoffii	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Aeromonas caviae	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Bacteroides fragilis	2/2	100 (34.2-100)	-	-	-	-	2/2	100 (34.2-100)
Campylobacter gracilis	0/1	0.0 (0.0-79.3)	-	-	-	-	0/1	0.0 (0.0-79.3)
Citrobacter braakii	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Citrobacter freundii	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Citrobacter koseri	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)
Enterobacter aerogenes	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Enterobacter cloacae	-	-	4/4	100 (51.0-100)	-	-	4/4	100 (51.0-100)
Escherichia coli	4/4	100 (51.0-100)	14/14	100 (78.5-100)	-	-	18/18	100 (82.4-100)
Klebsiella oxytoca	1/1	100 (20.7-100)	3/3	100 (43.9-100)	-	-	4/4	100 (51.0-100)
Klebsiella pneumoniae	4/4	100 (51.0-100)	4/5	80.0 (37.6-96.4)	-	-	8/9	88.9 (56.5-98.0)
Moraxella (Branhamella) catarrhalis	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Moraxella catarrhalis	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Morganella morganii	-	-	2/2	100 (34.2-100)	-	-	2/2	100 (34.2-100)
Proteus mirabilis	5/5	100 (56.6-100)	4/5	80.0 (37.6-96.4)	-	-	9/10	90.0 (59.6-98.2)
Proteus vulgaris	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Providencia stuartii	1/1	100 (20.7-100)	0/1	0.0 (0.0-79.3)	-	-	1/2	50.0 (9.5-90.5)
Pseudomonas	-	-	1/1	100 (20.7-100)	-	-	1/1	100 (20.7-100)
Pseudomonas aeruginosa	1/1	100 (20.7-100)	1/2	50.0 (9.5-90.5)	-	-	2/3	66.7 (20.8-93.9)
Serratia marcescens	2/2	100 (34.2-100)	-	-	-	-	2/2	100 (34.2-100)
Stenotrophomonas maltophilia	1/1	100 (20.7-100)	1/1	100 (20.7-100)	-	-	2/2	100 (34.2-100)
Veillonella species	-	-	0/1	0.0 (0.0-79.3)	-	-	0/1	0.0 (0.0-79.3)
Non-fermenting gram-negative bacilli	1/1	100 (20.7-100)	-	-	-	-	1/1	100 (20.7-100)

^{*}Organism reported by the clinical site as *Corynebacterium*. Sequencing identified *C. amycolatum*. Due to a high amount of sequence similarities, there is a possibility that *C. jeikeium* was the species detected.

Table 44: Species Detected in Pan Assays by Comparator Methods for Samples in Retrospective (Non-Intended Use) Samples with Gram-Negative or Fungal Organisms

	Retrospective (Non-Intended Use) Samples				
Target Species Detected by Comparator Method	Sens	itivity/PPA			
	TP/TP+FN	% (95% CI)			
Pan Candida	90/96	93.8 (87.0-97.1)			
Candida albicans	41/45	91.1 (79.3-96.5)			
Candida glabrata	33/35	94.3 (81.4-98.4)			
Candida krusei	3/3	100 (43.9-100)			
Candida parapsilosis	16/16	100 (80.6-100)			
an Gram-Negative	364/375	97.1 (94.8-98.4)			
Achromobacter xylosoxidans ssp xylosoxidans	0/1	0.0 (0.0-79.3)			
Acinetobacter baumannii	16/16	100 (80.6-100)			
Acinetobacter baumannii complex (baum-calcoac-13TU)	1/1	100 (20.7-100)			
Acinetobacter Iwoffii	1/1	100 (20.7-100)			
Acinetobacter nosocomialis	1/1	100 (20.7-100)			
Acinetobacter radioresistens	1/1	100 (20.7-100)			
Bacteroides fragilis	18/20	90.0 (69.9-97.2)			
Bacteroides ovatus	1/1	100 (20.7-100)			
Bacteroides thetaiotaomicron	0/4	0.0 (0.0-49.0)			
Burkholderia cepacia complex	1/1	100 (20.7-100)			
Citrobacter	2/2	100 (34.2-100)			
Citrobacter amalonaticus	1/1	100 (20.7-100)			
Citrobacter braakii	2/2	100 (34.2-100)			
Citrobacter freundii	13/13	100 (77.2-100)			
Citrobacter koseri	3/3	100 (43.9-100)			
Citrobacter youngae	1/1	100 (20.7-100)			
Delftia acidovorans	0/1	0.0 (0.0-79.3)			
Enterobacter aerogenes	6/6	100 (61.0-100)			
Enterobacter cloacae	14/14	100 (78.5-100)			
Enterobacter gergoviae	1/1	100 (20.7-100)			
Escherichia coli	112/112	100 (96.7-100)			
Fusobacterium	3/3	100 (43.9-100)			
Fusobacterium necrophorum	1/1	100 (20.7-100)			
Fusobacterium nucleatum	5/5	100 (56.6-100)			
Haemophilus influenzae	11/11	100 (74.1-100)			
Klebsiella oxytoca	10/10	100 (72.2-100)			
Klebsiella pneumoniae	46/47	97.9 (88.9-99.6)			
Leclercia adecarboxylata	2/2	100 (34.2-100)			
Moraxella sp.	1/1	100 (20.7-100)			
Morganella morganii	8/8	100 (67.6-100)			
Ochrobactrum anthropi	0/1	0.0 (0.0-79.3)			
Proteus mirabilis	16/16	100 (80.6-100)			
Providencia stuartii	2/2	100 (34.2-100)			

cobas eplex BCID gram-positive panel

	Retrospective (Non-Intended Use) Samples Sensitivity/PPA		
Target Species Detected by Comparator Method			
	TP/TP+FN	% (95% CI)	
Pseudomonas aeruginosa	25/25	100 (86.7-100)	
Pseudomonas putida	1/1	100 (20.7-100)	
Salmonella	15/15	100 (79.6-100)	
Salmonella choleraesuis subsp. arizonae	1/1	100 (20.7-100)	
Salmonella enterica subsp enterica serovar Typhimurium	1/1	100 (20.7-100)	
Salmonella typhi	2/2	100 (34.2-100)	
Serratia plymuthica	1/1	100 (20.7-100)	
Serratia marcescens	36/36	100 (90.4-100)	
Stenotrophomonas maltophilia	9/9	100 (70.1-100)	
Volinella species	0/1	0.0 (0.0-79.3)	

Resistance Gene Assay Species Stratification

mecA/mecC

Test results for resistance genes are only reported when an associated organism assay is positive in the same sample. (See **Table 9** for organisms specifically associated with the four resistance markers on the **cobas eplex** BCID-GP panel).

The PPA and NPA of the BCID-GP panel *mecA* target stratified by the *Staphylococcus* species identified by comparator methods for prospective, retrospective and contrived samples are shown in **Table 45**.

Table 45: Clinical Performance of *mecA* Target by *Staphylococcus* Species Detected by Comparator Methods

Species detected by Comparator Method		Sens	itivity/PPA	Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective	12/12	100 (75.8-100)	6/6	100 (61.0-100)
Coagulase-negative	Retrospective	-	-	-	-
staphylococci (CoNS)	Contrived	-	-	-	-
	Combined	12/12	100 (75.8-100)	6/6	100 (61.0-100)
	Prospective	1/1	100 (20.7-100)	0/1	0.0 (0.0-79.3)
CoNS (not S. epidermidis /	Retrospective	-	-	-	-
S. lugdunensis)	Contrived	-	-	-	-
	Combined	1/1	100 (20.7-100)	0/1	0.0 (0.0-79.3)
	Prospective	49/52	94.2 (84.4-98.0)	24/26	92.3 (75.9-97.9)
Otanbulanasa	Retrospective	1/2	50.0 (9.5-90.5)	1/1	100 (20.7-100)
Staphylococcus	Contrived	-	-	-	-
	Combined	50/54	92.6 (82.4-97.1)	25/27	92.6 (76.6-97.9)
	Prospective	80/83	96.4 (89.9-98.8)	74/77	96.1 (89.2-98.7)
Otania da a a a a a a a a a a a a a a a a a	Retrospective	105/106	99.1 (94.8-99.8)	16/17	94.1 (73.0-99.0)
Staphylococcus aureus	Contrived	10/10	100 (72.2-100)	49/49	100 (92.7-100)
	Combined	195/199	98.0 (94.9-99.2)	139/143	97.2 (93.0-98.9)
	Prospective	3/3	100 (43.9-100)	3/3	100 (43.9-100)
Staphylococcus aureus subsp.	Retrospective	2/2	100 (34.2-100)	0/0	-
aureus	Contrived	-	-	-	-
	Combined	5/5	100 (56.6-100)	3/3	100 (43.9-100)
	Prospective	1/1	100 (20.7-100)	1/1	100 (20.7-100)
Otambada a a a a a a a a a a a a a a a a a a	Retrospective	0/0	-	2/2	100 (34.2-100)
Staphylococcus auricularis	Contrived	-	-	-	-
	Combined	1/1	100 (20.7-100)	3/3	100 (43.9-100)
	Prospective	4/5	80.0 (37.6-96.4)	5/5	100 (56.6-100)
Otanbuda anana ""	Retrospective	4/4	100 (51.0-100)	7/7	100 (64.6-100)
Staphylococcus capitis	Contrived	-	-	-	-
	Combined	8/9	88.9 (56.5-98.0)	12/12	100 (75.8-100)

Species detected by Comparator Method		Sens	itivity/PPA	Specificity/NPA		
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective	-	-	-	-	
Staphylococcus carnosus subsp.	Retrospective	0/0	-	1/1	100 (20.7-100)	
carnosus	Contrived	-	-	-	-	
	Combined	0/0	-	1/1	100 (20.7-100)	
	Prospective	0/1	0.0 (0.0-79.3)	1/1	100 (20.7-100)	
0	Retrospective	-	-	-	-	
Staphylococcus cohnii	Contrived	-	-	-	-	
	Combined	0/1	0.0 (0.0-79.3)	1/1	100 (20.7-100)	
	Prospective	77/79	97.5 (91.2-99.3)	39/42	92.9 (81.0-97.5)	
	Retrospective	30/30	100 (88.6-100)	7/8	87.5 (52.9-97.8)	
Staphylococcus epidermidis	Contrived	1/1	100 (20.7-100)	0/0	-	
	Combined	108/110	98.2 (93.6-99.5)	46/50	92.0 (81.2-96.8)	
	Prospective	4/4	100 (51.0-100)	2/2	100 (34.2-100)	
	Retrospective	2/2	100 (34.2-100)	0/0	-	
Staphylococcus haemolyticus	Contrived	-	-	-	-	
	Combined	6/6	100 (61.0-100)	2/2	100 (34.2-100)	
	Prospective	12/13	92.3 (66.7-98.6)	10/11	90.9 (62.3-98.4)	
	Retrospective	12/12	100 (75.8-100)	1/1	100 (20.7-100)	
Staphylococcus hominis	Contrived	-	-	-	-	
	Combined	24/25	96.0 (80.5-99.3)	11/12	91.7 (64.6-98.5)	
	Prospective	10/11	90.9 (62.3-98.4)	11/11	100 (74.1-100)	
Staphylococcus hominis subsp.	Retrospective	2/2	100 (34.2-100)	3/3	100 (43.9-100)	
hominis	Contrived	-	-	-	-	
	Combined	12/13	92.3 (66.7-98.6)	14/14	100 (78.5-100)	
	Prospective	1/1	100 (20.7-100)	0/0	-	
Staphylococcus hominis subsp.	Retrospective	-	-	-	-	
novobiosepticus	Contrived	-	-	-	-	
	Combined	1/1	100 (20.7-100)	0/0	-	
	Prospective	0/0		2/2	100 (34.2-100)	
	Retrospective	1/1	100 (20.7-100)	3/3	100 (43.9-100)	
Staphylococcus lugdunensis	Contrived	0/0		45/45	100 (92.1-100)	
	Combined	1/1	100 (20.7-100)	50/50	100 (92.9-100)	
	Prospective	0/0	-	1/2	50.0 (9.5-90.5)	
	Retrospective	-	-	-	-	
Staphylococcus pettenkoferi	Contrived	-	-	-	-	
	Combined	0/0	-	1/2	50.0 (9.5-90.5)	
	Prospective	0/0	-	1/1	100 (20.7-100)	
	Retrospective	-	-	-	-	
Staphylococcus saccharolyticus	Contrived	-	-	_	-	
	Combined	0/0	-	1/1	100 (20.7-100)	

Species detected by Comparator Method		Sens	itivity/PPA	Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective	1/1	100 (20.7-100)	0/0	-
Stambula a a a a un a a a un a a butia un	Retrospective	0/0	-	1/1	100 (20.7-100)
Staphylococcus saprophyticus	Contrived	-	-	-	-
	Combined	1/1	100 (20.7-100)	1/1	100 (20.7-100)
	Prospective	-	-	-	-
Stambula a a a sua a a blaifa ri	Retrospective	0/0	-	1/1	100 (20.7-100)
Staphylococcus schleiferi	Contrived	-	-	-	-
	Combined	0/0	-	1/1	100 (20.7-100)
	Prospective	1/1	100 (20.7-100)	2/2	100 (34.2-100)
Stanbula a a a sur a simula na	Retrospective	-	-	-	-
Staphylococcus simulans	Contrived	-	-	-	-
	Combined	1/1	100 (20.7-100)	2/2	100 (34.2-100)
	Prospective	0/0	-	4/4	100 (51.0-100)
	Retrospective	-	-	-	-
Staphylococcus warneri	Contrived	-	-	-	-
	Combined	0/0	-	4/4	100 (51.0-100)

A comparison of specific *Staphylococcus* species and *mecA* identified by comparator methods versus the **cobas eplex** BCID-GP panel results are shown in **Table 46** and **Table 47** for prospective and retrospective samples.

Table 46: Distribution of *mecA* Results in *Staphylococcus aureus* Prospective/Retrospective Samples

	Comparator Method						
BCID-GP	Org+/ARG+	Org+/ARG+ Org+/ARG- Org- Tota					
Org+/ARG+	190	2	2	194			
Org+/ARG-	2	88	4	94			
Org-	2	7	1000	1009			
Total	194	97	1006	1297			

[%] Agreement (95% CI) for Org+/ARG+: 190/194=97.9 (94.8-99.2)

[%] Agreement (95% CI) for Org+/ARG-: 88/97=90.7 (83.3-95.0)

[%] Agreement (95% CI) for Org-: 1000/1006=99.4 (98.7-99.7)

Table 47: Distribution of *mecA* Results in *Staphylococcus* Species (Excluding Known *S. aureus, S. epidermidis, S. lugdunensis*) Prospective/Retrospective Samples

	Comparator Method					
BCID-GP	Org+/ARG+	Org+/ARG+ Org+/ARG- Org- To				
Org+/ARG+	33	1	4	38		
Org+/ARG-	3	45	8	56		
Org-	10*	4	1091	1105		
Total	46	50	1103	1199		

[%] Agreement (95% CI) for Org+/ARG+: 33/46=71.7 (57.5-82.7)

A table for *mecC* is not provided because *mecC* was only detected in a single species, *Staphylococcus* aureus. In the 49 contrived samples with *Staphylococcus* aureus containing *mecC*, the resulting PPA and NPA were both 100%.

vanA/vanB

The PPA and NPA of the BCID-GP panel *vanA* target stratified by the *Enterococcus* species identified by comparator methods for 208 clinical prospective/retrospective samples and 126 contrived samples are shown in **Table 48**.

A table for *vanB* is not provided because *vanB* was only detected in 1 clinical sample and 52 contrived samples comprised of two species, *E. faecalis* (*n*=43) and *E. faecium* (*n*=10), resulting in PPA and NPA of 100%.

Table 48: Clinical Performance of *vanA* Target by *Enterococcus* Species Detected by Comparator Methods

Species detected by Comparator Method		Sens	itivity/PPA	Specificity/NPA	
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)
	Prospective	0/0	-	1/1	100 (20.7-100)
Enternacion	Retrospective	-	-	-	-
Enterococcus	Contrived	-	-	-	-
	Combined	0/0	-	1/1	100 (20.7-100)
	Prospective	0/0		1/1	100 (20.7-100)
Enterococcus avium	Retrospective	0/1	0.0 (0.0-79.3)	2/2	100 (34.2-100)
Enterococcus avium	Contrived	-	-	-	-
	Combined	0/1	0.0 (0.0-79.3)	3/3	100 (43.9-100)
	Prospective	-	-	ı	-
Enterococcus casseliflavus	Retrospective	0/0		1/1	100 (20.7-100)
	Contrived	-	-	-	-
	Combined	0/0	-	1/1	100 (20.7-100)

[%] Agreement (95% CI) for Org+/ARG-: 45/50=90.0 (78.6-95.7)

[%] Agreement (95% CI) for Org-: 1091/1103=98.9 (98.1-99.4)

^{*10} samples had a Staphylococcus species (not S. aureus, S. epidermidis, or

S. lugdunensis) with mecA identified by comparator methods, whereas the **cobas eplex** BCID-GP panel detected S. epidermidis with mecA.

Species detected by Comparator Method		Sens	itivity/PPA	Specificity/NPA		
		TP/TP+FN	% (95% CI)	TN/TN+FP	% (95% CI)	
	Prospective	-	-	-	-	
Enterococcus casseliflavus /	Retrospective	0/0		1/1	100 (20.7-100)	
E. gallinarum	Contrived	-	-	-	-	
	Combined	0/0	-	1/1	100 (20.7-100)	
	Prospective	1/1	100 (20.7-100)	48/48	100 (92.6-100)	
_ , , ,	Retrospective	11/14	78.6 (52.4-92.4)	76/76	100 (95.2-100)	
Enterococcus faecalis	Contrived	10/10	100 (72.2-100)	42/42	100 (91.6-100)	
	Combined	22/25	88.0 (70.0-95.8)	166/166	100 (97.7-100)	
	Prospective	7/7	100 (64.6-100)	4/5	80.0 (37.6-96.4)	
	Retrospective	44/44	100 (92.0-100)	8/9	88.9 (56.5-98.0)	
Enterococcus faecium	Contrived	50/50	100 (92.9-100)	10/10	100 (72.2-100)	
	Combined	101/101	100 (96.3-100)	22/24	91.7 (74.2-97.7)	
	Prospective	-	-	-	-	
	Retrospective	-	-	-	-	
Enterococcus flavescens	Contrived	0/0		3/3	100 (43.9-100)	
	Combined	0/0	-	3/3	100 (43.9-100)	
	Prospective	-	-	-	-	
	Retrospective	0/0	-	2/2	100 (34.2-100)	
Enterococcus gallinarum	Contrived	0/0		4/4	100 (51.0-100)	
	Combined	0/0	-	6/6	100 (61.0-100)	
	Prospective	-	-	-	-	
	Retrospective	-	-	-	-	
Enterococcus hirae	Contrived	0/0		1/1	100 (20.7-100)	
	Combined	0/0	-	1/1	100 (20.7-100)	
	Prospective	-	-	-	-	
	Retrospective	-	-	-	-	
Enterococcus malodoratus	Contrived	0/0		3/3	100 (43.9-100)	
	Combined	0/0	-	3/3	100 (43.9-100)	
	Prospective	-	-	-	-	
F-1	Retrospective	-	-	-	-	
Enterococcus raffinosus	Contrived	0/0		2/2	100 (34.2-100)	
	Combined	0/0	-	2/2	100 (34.2-100)	
	Prospective	-	-	-	-	
	Retrospective	-	-	-	-	
Enterococcus saccharolyticus	Contrived	0/0		1/1	100 (20.7-100)	
	Combined	0/0	-	1/1	100 (20.7-100)	

A comparison of *Enterococcus faecalis/Enterococcus faecium* and *vanA* identified by comparator methods versus the **cobas eplex** BCID-GP panel results is shown in **Table 49** and **Table 50** for prospective and retrospective samples.

Table 49: Distribution of *vanA* Results in Enterococcus faecalis Prospective/Retrospective Samples

	Compositor Mothed						
	C	omparator Metho	oa				
BCID-GP	Org+/ARG+	Org+/ARG+ Org+/ARG- Org- Total					
Org+/ARG+	10	0	0	10			
Org+/ARG-	1 ^A	120	1	122			
Org-	4 ^B	4	1157	1165			
Total	15	124	1158	1297			

[%] Agreement (95% CI) for Org+/ARG+: 10/15=66.7 (41.7-84.8)

In the remaining 2 samples, *vanA* signal was above the threshold for detection; however an associated organism was not detected by the **cobas eplex** BCID-GP panel and the *vanA* target was reported as 'N/A'.

Table 50: Distribution of *vanA* Results in Enterococcus faecium Prospective/Retrospective Samples

	Comparator Method					
BCID-GP	Org+/ARG+ Org+/ARG- Org- Tot					
Org+/ARG+	51	2	3	56		
Org+/ARG-	0	10	5	15		
Org-	0	2	1224	1226		
Total	51	14	1232	1297		

[%] Agreement (95% CI) for Org+/ARG+: 51/51=100.0 (93.0-100)

Co-detections in Clinical Samples

The **cobas eplex** BCID-GP panel identified a total of 103 bacterial co-detections in 1297 clinical samples (prospective/retrospective). Of the 711 prospective samples, 672 (94.5%) had single detections, 38 (5.3%) had double detections, and 1 (0.1%) had a triple detection. Of the 586 retrospective samples, 522 (89.1%) had single detections, 56 (9.6%) had double detections, and 8 (1.4%) had triple detections. Neither the prospective nor the retrospective arms of the clinical studies contained a sample with more than 3 organisms detected.

Tables 51-52 below summarize co-detections detected by the **cobas eplex** BCID-GP panel in prospective and retrospective samples.

[%] Agreement (95% CI) for Org+/ARG-: 120/124=96.8 (92.0-98.7)

[%] Agreement (95% CI) for Org-: 1157/1158=99.9 (99.5-100)

A. Additional testing indicated this sample may have been contaminated during the original extraction process for the comparator method and misidentified as having *vanA* present. Specifically, results were negative for *vanA* from qPCR testing of 2 repeat extractions from the original sample (this sample also did not have *vanA* detected when tested with an FDA-cleared multiplex assay).

B. 2 of the 4 samples had *E. faecium* (not *E.* faecalis) with *vanA* detected by the **cobas eplex** BCID-GP panel.

[%] Agreement (95% CI) for Org+/ARG-: 10/14=71.4 (45.4-88.3)

[%] Agreement (95% CI) for Org-: 1224/1232=99.4 (98.7-99.7)

Table 51: Co-Detections Identified by the cobas eplex BCID-GP panel (Prospective Samples)

Distinct Co-Detection Combinations Detected by the cobas eplex BCID-GP panel in Prospective Clinical Samples		Number of Samples	Discrepant Organism(s) /		
Target 1	Target 2	Target 3	Resistance Marker	(Number Discrepant)	Resistance Marker(s) ^{A,B}
C. acnes	Staphylococcus			1 (1)	C. acnes (1)
Corynebacterium	S. epidermidis		mecA	2 (0)	
E. faecalis	E. faecium			2 (1)	E. faecium (1)
E. faecalis	Pan GN			6 (0)	
E. faecalis	S. epidermidis		mecA	1 (0)	
E. faecalis	Staphylococcus			1 (0)	
E. faecalis	Staphylococcus		mecA	1 (0)	
E. faecium	Pan GN	Staphylococcus	mecA, vanA	1 (0)	
E. faecium	S. epidermidis		mecA, vanA	1 (0)	
Lactobacillus	Streptococcus			1 (1)	Lactobacillus (1)
Listeria	Staphylococcus			1 (1)	Listeria (1)
Pan GN	S. anginosus group			2 (0)	
Pan GN	S. aureus			1 (0)	
Pan GN	S. epidermidis		mecA	2 (2)	Pan GN (1), S. epidermidis (1)
Pan GN	S. pneumoniae			1 (1)	S. pneumoniae (1)
Pan GN	Staphylococcus			2 (0)	
Pan GN	Staphylococcus		mecA	1 (0)	
Pan GN	Streptococcus			1 (0)	
S. agalactiae	S. aureus			1 (0)	
S. anginosus group	Staphylococcus			2 (2)	S. anginosus gp (1), Staphylococcus (1)
S. aureus	S. epidermidis		mecA	2 (2)	S. epidermidis (2)
S. epidermidis	S. lugdunensis			1 (1)	S. epidermidis (1), S. lugdunensis (1)
S. epidermidis	S. lugdunensis		mecA	1 (1)	S. lugdunensis (1)
S. epidermidis	Streptococcus			2 (1)	S. epidermidis (1)
Staphylococcus	Streptococcus			1 (0)	
Staphylococcus	Streptococcus		mecA	1 (1)	Streptococcus (1)

A. A discrepant organism or resistance marker is defined as one that was detected by the BCID-GP panel but not by the comparator method(s).

B. 16/16 false positive organisms were investigated using PCR/sequencing; the discrepant organism was detected in 7/16, not detected in 2, and was indeterminate for the remaining 7:

i. C. acnes was not detected in the 1 C. acnes false positive sample.

ii. In 1/1 false positive E. faecium samples, E. faecium was detected.

iii. In 1/1 false positive Lactobacillus samples, Lactobacillus was detected.

iv. Listeria was not detected in the 1 Listeria false positive sample.

v. In the 1 false positive Pan Gram-Negative sample, PCR/sequencing was indeterminate.

cobas eplex BCID gram-positive panel

- vi. In the 1 false positive S. anginosus group sample, PCR/sequencing was indeterminate.
- vii. In 2/5 false positive *S. epidermidis* samples, *S. epidermidis* was detected. PCR/sequencing was indeterminate in the remaining 3 samples.
- viii. In 2/2 false positive S. lugdunensis samples, S. lugdunensis was detected.
- ix. In the 1 false positive S. pneumoniae sample, PCR/sequencing was indeterminate.
- x. In the 1 false positive *Staphylococcus* sample, PCR/sequencing was indeterminate.
- xi. In 1/1 false positive Streptococcus samples, Streptococcus was detected.

Table 52: Co-Detections Identified by the cobas eplex BCID-GP panel (Retrospective Samples)

Distinct Co-Detection Combinations Detected by the cobas eplex BCID-GP panel in Retrospective Clinical Samples		Number of Samples	Discrepant Organism(s) / Resistance Marker(s)		
Target 1	Target 2	Target 3	Resistance Marker	(Number Discrepant)	A,B
Corynebacterium	S. epidermidis	S. lugdunensis	mecA	1 (1)	Corynebacterium (1)
Corynebacterium	Staphylococcus			1 (0)	
Corynebacterium	Staphylococcus		mecA	1 (0)	
E. faecalis	E. faecium			4 (3)	E. faecium (3)
E. faecalis	E. faecium		vanA	3 (1)	E. faecium (1)
E. faecalis	Pan <i>Candida</i>			1 (0)	
E. faecalis	Pan GN			6 (0)	
E. faecalis	Pan GN		vanA	2 (0)	
E. faecalis	Pan GN	S. aureus		1 (0)	
E. faecalis	S. aureus		mecA	1 (0)	
E. faecalis	Staphylococcus		vanA	1 (1)	Staphylococcus (1)
E. faecium	Lactobacillus	Pan GN	vanA	1 (1)	Lactobacillus (1)
E. faecium	Pan Candida		vanA	1 (1)	E. faecium (1)
E. faecium	Pan Candida	S. epidermidis	mecA, vanA	1 (1)	S. epidermidis (1)
E. faecium	Pan GN			3 (0)	
E. faecium	Pan GN		vanA	5 (0)	
E. faecium	Pan GN	Staphylococcus	mecA, vanA	1 (0)	
E. faecium	S. aureus		mecA, vanA	1 (0)	
E. faecium	Streptococcus		vanA	1 (1)	Streptococcus (1)
Enterococcus	S. anginosus group			1 (0)	
Lactobacillus	S. anginosus group			1 (0)	
Micrococcus	S. pyogenes			1 (1)	Micrococcus (1)
Pan Candida	S. epidermidis		mecA	2 (0)	
Pan Candida	S. pneumoniae			1 (0)	
Pan GN	S. agalactiae			2 (1)	Pan GN (1)
Pan GN	S. anginosus group			4 (0)	
Pan GN	S. anginosus group	S. aureus		1 (1)	Pan GN (1)

Distinct Co-Detection Combinations Detected by the cobas eplex BCID-GP panel in Retrospective Clinical Samples			Number of Samples	Discrepant Organism(s) / Resistance Marker(s)	
Target 1	Target 2	Target 3	Resistance Marker	(Number Discrepant)	А,В
Pan GN	S. aureus			1 (0)	
Pan GN	S. aureus	S. epidermidis	mecA	1 (1)	S. epidermidis (1)
Pan GN	S. pneumoniae			2 (0)	
Pan GN	Streptococcus			3 (0)	
S. agalactiae	S. aureus			2 (0)	
S. agalactiae	S. aureus		mecA	1 (0)	
S. agalactiae	S. aureus	S. epidermidis	mecA	1 (1)	S. epidermidis (1)
S. aureus	S. epidermidis		mecA	1 (0)	
S. aureus	Streptococcus		mecA	2 (1)	Streptococcus (1)
S. epidermidis	Streptococcus		mecA	1 (0)	

- A. A discrepant organism or resistance marker is defined as one that was detected by the BCID-GP panel but not by the comparator method(s).
- B. 16/16 false positive organisms were investigated using PCR/sequencing; the discrepant organism was detected in 6/16, not detected in 4, and was indeterminate for the remaining 6:
 - i. In 1/1 false positive Corynebacterium samples, Corynebacterium was detected.
 - ii. In 2/5 false positive *E. faecium* samples, *E. faecium* was detected. PCR/sequencing was indeterminate in the remaining 3 samples.
 - iii. Lactobacillus was not detected in the 1 Lactobacillus false positive sample.
 - iv. Micrococcus was not detected in the 1 Micrococcus false positive sample
 - v. In 1/2 false positive Pan Gram-Negative samples, a gram-negative organism was not detected. PCR/sequencing was indeterminate in the remaining sample.
 - vi. In 1/1 false positive Staphylococcus samples, Staphylococcus was detected.
 - vii. S. *epidermidis* was not detected in 1/3 S. *epidermidis* false positive samples, PCR/sequencing was indeterminate in the remaining 2 samples.
 - viii. In 2/2 false positive Streptococcus samples, Streptococcus was detected.

Tables 53-54 below summarize co-detections identified by comparator method in prospective and retrospective samples that differ from the co-detections represented in the previous tables that were identified by the **cobas eplex** BCID-GP panel. The following co-detections include an organism not targeted by the **cobas eplex** BCID-GP panel (i.e., off-panel organism denoted with an asterisk), an organism discrepant with the **cobas eplex** BCID-GP panel, and/or an organism with more detailed identification than provided by the **cobas eplex** BCID-GP panel (e.g., **cobas eplex** BCID-GP panel detected Pan Gram-Negative and comparator methods identified *E. coli*).

Table 53: Co-Detections Identified by the Comparator Method(s) (Prospective Samples)

Method(s) (Prospective Samples) Distinct Co-Detection Combinations Detected by the Comparator Methods in Prospective Clinical Samples					Number of Samples	Discrepant Organism(s)/
Organism 1	Organism 2	Organism 3	Organism 4	Resistance Marker	(Number Discrepant)	Resistance Markers(s)*
A. baumannii	E. faecium	Staphylococcus		mecA, vanA	1 (0)	
A. baumannii	S. aureus				1 (0)	
A. baumannii	Staphylococcus			mecA	1 (0)	
Acinetobacter Iwoffii	Staphylococcus hominis			mecA	1 (0)	
Aerococcus viridans*	K. oxytoca	S. epidermidis	Staphylococcus cohnii	mecA	1 (1)	S. cohnii (1), S. epidermidis (1), mecA (1)
Aerococcus viridans*	Staphylococcus hominis				1 (0)	
B. fragilis	Clostridium species*				1 (0)	
B. fragilis	S. anginosus gp				1 (0)	
C. acnes	S. epidermidis				1 (1)	S. epidermidis (1)
C. acnes	S. lugdunensis				1 (1)	C. acnes (1)
Citrobacter freundii	K. pneumoniae	Staphylococcus hominis		mecA	1 (1)	mecA (1)
Citrobacter koseri	E. faecalis				1 (0)	
Corynebacterium	S. epidermidis	Streptococcus		mecA	1 (1)	Streptococcus (1)
Corynebacterium	Streptococcus				1 (1)	Corynebacterium (1)
E. coli	E. faecalis	P. mirabilis			1 (0)	, , ,
E. coli	Lactococcus lactis*				1 (0)	
E. coli	P. mirabilis	Providencia stuartii	S. anginosus gp		1 (0)	
E. faecalis	E. faecium		3 3.		1 (1)	E. faecium (1)
E. faecalis	K. pneumoniae				2 (0)	
E. faecalis	P. mirabilis				1 (0)	
E. faecalis	S. aureus			mecA	1 (1)	S. aureus (1), mecA (1)
E. faecalis	S. marcescens				1 (0)	, ,
E. faecalis	Staphylococcus (CoNS)			mecA	1 (0)	
E. faecium	S. epidermidis	Staphylococcus haemolyticus		mecA, vanA	1 (0)	
K. pneumoniae	Staphylococcus haemolyticus	non-fermenting GN bacilli			1 (0)	
P. aeruginosa	P. mirabilis	Streptococcus - viridans group			1 (0)	
P. mirabilis	Staphylococcus			тесА	1 (1)	Staphylococcus (1), mecA (1)
Peptostreptococcus species*	Staphylococcus				1 (0)	
Rothia (stomatococcus) mucilaginosus*	S. epidermidis				1 (0)	
Rothia mucilaginosa*	Streptococcus - viridans group				1 (0)	
S. agalactiae	S. aureus	Staphylococcus		mecA	1 (1)	S. aureus (1), Staphylococcus (1), mecA (1)

Distinct Co-Detection Combinations Detected by the Comparator Methods in Prospective Clinical Samples					Number of Samples	Discrepant Organism(s)/
Organism 1	Organism 2	Organism 3	Organism 4	Resistance Marker	(Number Discrepant)	Resistance Markers(s)*
S. anginosus	Streptococcus mitis				1 (1)	S. anginosus (1)
S. epidermidis	Staphylococcus capitis			mecA	1 (0)	
S. epidermidis	Staphylococcus hominis				2 (0)	
S. epidermidis	Staphylococcus hominis			mecA	4 (1)	S. epidermidis (1)
S. epidermidis	Staphylococcus hominis	Staphylococcus warneri			1 (0)	
S. epidermidis	Streptococcus - viridans group				1 (1)	S. epidermidis (1)
S. epidermidis	Streptococcus parasanguinis				1 (0)	
S. maltophilia	Streptococcus				1 (1)	Streptococcus (1)
S. marcescens	Streptococcus mitis group	Streptococcus salivarius			1 (0)	
Staphylococcus cohnii	Streptococcus - viridans group				1 (1)	S. viridans group (1)
Staphylococcus hominis	Staphylococcus pettenkoferi				1 (0)	
Staphylococcus hominis	Streptococcus mitis			mecA	1 (1)	mecA (1)

^{*} Indicates an off-panel organism not targeted by the BCID-GP panel.

Table 54: Co-Detections Identified by the Comparator Method(s) (Retrospective Samples)

Distinct Co-Detection Combinations Detected by the Comparator Methods in Retrospective Clinical Samples					Number of Samples	Discrepant Organism(s)/
Organism 1	Organism 2	Organism 3	Organism 4	Resistance Marker	(Number Discrepant)	Resistance Markers(s)*
A. baumannii	E. faecalis			vanA	2 (2)	A. baumannii (2)
A. baumannii	E. faecalis	S. aureus		mecA	1 (1)	mecA (1)
A. baumannii	E. faecium			vanA	1 (0)	
Aerococcus sanguinicola*	Corynebacterium	Staphylococcus saprophyticus			1 (0)	
Aeromonas caviae	E. coli	Enterococcus casseliflavus	K. oxytoca		1 (1)	E. casseliflavus (1)
C. acnes	Enterococcus avium			vanA	1 (1)	E. avium (1), vanA (1)
C. albicans	E. faecalis			vanA	1 (1)	E. faecalis (1)
C. albicans	E. faecium	Staphylococcus hominis		mecA, vanA	1 (0)	
C. albicans	S. epidermidis			mecA	1 (0)	
C. glabrata	Lactobacillus rhamnosus				1 (1)	C. glabrata (1)
C. glabrata	S. pneumoniae				1 (0)	

A. A discrepant organism or resistance marker is defined as one that was detected by the comparator method(s) but not by the BCID-GP panel (excludes organisms not targeted by the BCID-GP panel).

B. 16 discrepant organisms were investigated using PCR/sequencing; 1 discrepant organism was not detected:

⁻In 1/1 false negative S. anginosus group sample, PCR/Sequencing instead detected Streptococcus lutetiensis.

Distinct Co-Detection Combinations Detected by the Comparator Methods in Retrospective Clinical Samples			Number of Samples	Discrepant Organism(s)/		
Organism 1	Organism 2	Organism 3	Organism 4	Resistance Marker	(Number Discrepant)	Resistance Markers(s)*
C. krusei	S. epidermidis			mecA	1 (0)	
C. parapsilosis	E. faecalis				1 (0)	
C. parapsilosis	E. faecalis			vanA	1 (1)	C. parapsilosis (1)
Citrobacter braakii	Streptococcus oralis				1 (0)	
E. cloacae	E. faecalis				1 (0)	
E. cloacae	E. faecium			vanA	1 (0)	
E. cloacae	E. faecium	Staphylococcus hominis		mecA, vanA	1 (0)	
E. cloacae	S. anginosus gp				1 (0)	
E. coli	E. faecalis				3 (0)	
E. coli	E. faecalis	K. pneumoniae			1 (0)	
E. coli	E. faecalis	P. mirabilis			1 (0)	
E. coli	E. faecium				2 (0)	
E. coli	K. oxytoca	Streptococcus infantarius			1 (0)	
E. coli	S. agalactiae				1 (0)	
E. coli	S. anginosus gp				1 (0)	
E. coli	S. aureus			mecA	1 (0)	
E. coli	S. pneumoniae				1 (0)	
E. coli	Streptococcus bovis				1 (0)	
E. faecalis	K. pneumoniae			vanA	1 (1)	E. faecalis (1), K. pneumoniae (1)
E. faecalis	M. morganii			vanA	1 (0)	<i>p</i> - 2 2 2 ()
E. faecalis	M. morganii	Proteus vulgaris		vanA	1 (1)	E. faecalis (1), vanA (1)
E. faecalis	P. aeruginosa	S. aureus		mecA	1 (1)	E. faecalis (1), P. aeruginosa (1)
E. faecalis	P. mirabilis				2 (2)	E. faecalis (1), P. mirabilis (1)
E. faecalis	P. mirabilis			vanA	1 (1)	E. faecalis (1), vanA (1)
E. faecalis	Providencia stuartii				1 (1)	P. stuartii (1)
E. faecalis	S. maltophilia			vanA	1 (0)	
E. faecium	K. pneumoniae				1 (0)	
E. faecium	Moraxella (Branhamella) catarrhalis	Pediococcus pentosaceus*		vanA	1 (0)	
E. faecium	P. aeruginosa			vanA	1 (0)	
E. faecium	P. mirabilis			vanA	1 (0)	
E. faecium	Pseudomonas			vanA	1 (0)	
E. faecium	S. epidermidis	Staphylococcus hominis		mecA	1 (1)	E. faecium (1)
Enterobacter aerogenes	S. anginosus gp				1 (0)	
Enterococcus avium	S. anginosus gp				1 (0)	
K. oxytoca	S. anginosus gp				1 (0)	
K. pneumoniae	S. aureus				2 (1)	S. aureus (1)

Distinct Co-Detection Combinations Detected by the Comparator Methods in Retrospective Clinical Samples					Number of Samples	Discrepant Organism(s)/
Organism 1	Organism 2	Organism 3	Organism 4	Resistance Marker	(Number Discrepant)	Resistance Markers(s)*
L. monocytogenes	Staphylococcus			mecA	1 (1)	Staphylococcus (1), mecA (1)
Lactobacillus casei	Veillonella species				1 (1)	Veillonella species (1)
Lactobacillus rhamnosus	Pediococcus acidilactici*				1 (0)	
Lactobacillus rhamnosus	S. anginosus gp	Staphylococcus	Streptococcus - viridans group		1 (1)	Staphylococcus (1)
Micrococcus	Pseudoclavibacter*				1 (0)	
Moraxella catarrhalis	S. pneumoniae				1 (0)	
S. agalactiae	S. aureus				1 (1)	S. aureus (1)
S. agalactiae	S. aureus	Streptococcus - viridans group			1 (0)	
S. aureus	S. epidermidis				1 (1)	S. aureus (1)
S. aureus	S. pyogenes			mecA	1 (1)	S. pyogenes (1)
S. aureus	Staphylococcus capitis				1 (0)	
S. aureus	Streptococcus mitis			mecA	1 (0)	
S. epidermidis	Staphylococcus hominis				1 (0)	
S. epidermidis	Staphylococcus hominis			mecA	3 (0)	
S. epidermidis	Staphylococcus hominis	Streptococcus parasanguinis		mecA	1 (0)	
Staphylococcus capitis	Staphylococcus hominis			mecA	1 (0)	

^{*} Indicates an off-panel organism not targeted by the BCID-GP panel.

Clinical Study cobas eplex instrument Performance

A total of 2354 samples (including prospective, retrospective, and contrived samples) were initially tested in the clinical evaluations. Of these, 24/2354 (1.0%) did not complete the run and the sample was retested. After repeat testing, all 2354 samples completed testing and 2246/2354 (95.4%, 95% CI: 94.5%-96.2%) generated valid results and 108/2354 (4.6%, 95% CI: 3.8%-5.5%) generated invalid results on the first completed attempt.

Upon repeat testing of the 108 samples with initially invalid results, 3/108 (2.8%) did not complete the run and the sample was retested. After repeat testing, all 108 samples completed testing and 106/108 (98.1%) generated valid results. Overall, after final testing, 2/2354 (0.1%, 95% CI: 0.0%-0.3%) had final, invalid results, resulting in a final validity rate of 2352/2354 (99.9%, 95% CI: 99.7%-100%).

A. A discrepant organism or resistance marker is defined as one that was detected by the comparator method(s) but not by the BCID-GP panel (excludes organisms not targeted by the BCID-GP panel).

B. 24 discrepant organisms were investigated using PCR/sequencing; 2 discrepant organisms were not detected:

⁻In 2/6 false negative E. faecalis samples, PCR/Sequencing instead detected Enterococcus faecium.

ANALYTICAL PERFORMANCE CHARACTERISTICS

Limit of Detection (Analytical Sensitivity)

The limit of detection (LoD), or analytical sensitivity, was identified and verified for each assay on the BCID-GP panel using at least two quantified reference strains in simulated blood culture sample matrix, which is defined as a whole blood with EDTA added to a blood culture bottle in the same ratio as the manufacturer recommends and incubated for 8 hours. At least 20 replicates per target were tested for each condition. The limit of detection was defined as the lowest concentration of each target that is detected in ≥95% of tested replicates. The confirmed LoD for each **cobas eplex** BCID-GP panel organism is shown in **Table 55**.

Table 55: LoD Results Summary

_	Table 55: LoD Results Sum		LoD
Target	Organism	Strain	Concentration (CFU/mL)
P. coroup group	Bacillus cereus	ATCC 21769	1 x 10 ⁵
B. cereus group	Bacillus thuringiensis	ATCC 35646	1 x 10 ⁵
B. subtilis group	Bacillus subtilis	ATCC 55614	1 x 10 ⁶
B. Subtilis group	Bacillus atrophaeus	ATCC 51189	1 x 10 ⁶
Corynobostorium	Corynebacterium striatum	ATCC 43735	1 x 10 ⁶
Corynebacterium	Corynebacterium jeikeium	ATCC 43217	1 x 10 ⁷
Cutibactorium conce (P. conce)	Cutibacterium acnes (P. acnes)	ATCC 33179	1 x 10 ⁷
Cutibacterium acnes (P. acnes)	Cutibacterium acnes (P. acnes)	ATCC 6919	1 x 10 ⁸
	Enterococcus faecium	ATCC BAA-2316	1 x 10 ⁵
Enterococcus	Enterococcus faecium	ATCC BAA-2317	1 x 10 ⁶
	Enterococcus raffinosus	ATCC 49464	1 x 10 ⁶
Enterococcus faecium	Enterococcus faecium	ATCC BAA-2316	1 x 10 ⁵
Enterococcus faecium	Enterococcus faecium	ATCC BAA-2317	1 x 10 ⁶
Entergoggia foncella	Enterococcus faecalis	ATCC 51575	1 x 10 ⁶
Enterococcus faecalis	Enterococcus faecalis	ATCC 700802	1 x 10 ⁶
Lastabasillus	Lactobacillus paracasei	ATCC 25598	1 x 10 ⁵
Lactobacillus	Lactobacillus casei	ATCC 334	1 x 10 ⁵
	Listeria seeligeri	ATCC 35967	1 x 10 ⁵
Listeria	Listeria monocytogenes	ATCC 10890	1 x 10 ⁵
	Listeria monocytogenes	ATCC 19111	1 x 10 ⁶
Lietoria managutaganaa	Listeria monocytogenes	ATCC 10890	1 x 10 ⁵
Listeria monocytogenes	Listeria monocytogenes	ATCC 19111	1 x 10 ⁵
Misussassus	Micrococcus luteus	ATCC 19212	1 x 10 ⁶
Micrococcus	Micrococcus luteus	ATCC 10240	1 x 10 ⁷
	Staphylococcus aureus	ATCC BAA-2313	1 x 10 ⁴
	Staphylococcus aureus	ATCC BAA-2312	1 x 10 ⁵
	Staphylococcus epidermidis	ATCC 35983	1 x 10⁵
Staphylococcus	Staphylococcus epidermidis	ATCC 35984	1 x 10 ⁵
	Staphylococcus lugdunensis	NRS 879	1 x 10 ⁵
	Staphylococcus lugdunensis	ATCC 49576	1 x 10 ⁶
	Staphylococcus haemolyticus	NRS 62	1 x 10 ⁷

Target	Organism	Strain	LoD Concentration (CFU/mL)
Staphylococcus aureus	Staphylococcus aureus	ATCC BAA-2313	1 x 10 ⁵
Giaphylococcus aureus	Staphylococcus aureus	ATCC BAA-2312	1 x 10 ⁵
Staphylococcus epidermidis	Staphylococcus epidermidis	ATCC 35983	1 x 10 ⁵
Staphylococcus epidennidis	Staphylococcus epidermidis	ATCC 35984	1 x 10 ⁵
Staphylococcus lugdunensis	Staphylococcus lugdunensis	NRS 879	1 x 10 ⁵
Staphylococcus luguarierisis	Staphylococcus lugdunensis	ATCC 49576	1 x 10 ⁵
	Streptococcus pneumoniae	ATCC BAA-475	1 x 10 ⁵
	Streptococcus pneumoniae	ATCC 10357	1 x 10 ⁵
Streptococcus	Streptococcus gordonii	ATCC 10558	1 x 10 ⁶
	Streptococcus agalactiae	ATCC 12401	1 x 10 ⁶
	Streptococcus agalactiae	ATCC 13813	1 x 10 ⁷
Ctrontogogy o galactico	Streptococcus agalactiae	ATCC 12401	1 x 10 ⁵
Streptococcus agalactiae	Streptococcus agalactiae	ATCC 13813	1 x 10 ⁶
Ctrontogogous anginogus group	Streptococcus intermedius	ATCC 27335	1 x 10 ⁴
Streptococcus anginosus group	Streptococcus anginosus	ATCC 9895	1 x 10 ⁶
Streptococcus pneumoniae	Streptococcus pneumoniae	ATCC BAA-475	1 x 10 ⁵
	Streptococcus pneumoniae	ATCC 10357	1 x 10 ⁵
Ctrontogogy pyggggg	Streptococcus pyogenes	ATCC 12384	1 x 10 ⁵
Streptococcus pyogenes	Streptococcus pyogenes	ATCC 49399	1 x 10 ⁵
	Stenotrophomonas maltophilia	ATCC 13636	1 x 10 ⁶
	Enterobacter cloacae	ATCC 13047	1 x 10 ⁶
	Escherichia coli	ATCC 4157	1 x 10 ⁶
Pan Gram-Negative	Klebsiella pneumoniae	ATCC BAA-1706	1 x 10 ⁶
Fan Gram-Negative	Serratia marcescens	ATCC 8100	1 x 10 ⁶
	Proteus mirabilis	ATCC 43071	1 x 10 ⁶
	Acinetobacter baumannii	NCTC13302	1 x 10 ⁷
	Neisseria meningitidis	ATCC 13113	1 x 10 ⁷
Pan Gram-Negative	Pseudomonas aeruginosa	ATCC 15442	1 x 10 ⁷
Don Condido	Candida albicans	ATCC 24433	1 x 10 ⁶
Pan Candida	Candida glabrata	ATCC 66032	1 x 10 ⁶
maaA	Staphylococcus epidermidis	ATCC 35983	1 x 10 ⁵
mecA	Staphylococcus epidermidis	ATCC 35984	1 x 10 ⁵
maaC	Staphylococcus aureus	ATCC BAA-2313	1 x 10 ⁴
mecC	Staphylococcus aureus	ATCC BAA-2312	1 x 10 ⁴
uan 4	Enterococcus faecium	ATCC BAA-2316	1 x 10 ⁴
vanA	Enterococcus faecium	ATCC BAA-2317	1 x 10 ⁵
uanD.	Enterococcus faecalis	ATCC 51575	1 x 10 ⁵
vanB	Enterococcus faecalis	ATCC 700802	1 x 10 ⁵

Analytical Reactivity (Inclusivity)

A panel of 459 strains/isolates representing the genetic, temporal and geographic diversity of each target on the **cobas eplex** BCID-GP panel was evaluated to demonstrate analytical reactivity. Each bacterial strain was tested in triplicate at 1 x 10^8 CFU/mL or less and each fungal strain was tested at 1 x 10^6 CFU/mL. In the cases where the initial testing concentration did not result in a "Detected" result, the concentration was increased to the point where detection was observed (see footnotes for concentrations of these strains). Organisms detected are shown in **Table 56**. Additional strains were detected as a part of the Limit of Detection (Analytical Sensitivity) study and can be found in **Table 55**.

Table 56: Analytical Reactivity (Inclusivity)

Organism

	Table
Organism	Strain
Bacillus cereu	s
	ATCC 21769
Daville and a	ATCC 10876
Bacillus cereus	ATCC 31430
	ATCC 53522
	ATCC 35646
5	ATCC 33679
Bacillus thuringiensis	ATCC 55173
	ATCC 10792
Bacillus subtili	is
	ATCC 23845
	ATCC 23842
Bacillus amyloliquefaciens	ATCC 23350
	ATCC 53495
	ATCC 51189
	ATCC 6455
Bacillus atrophaeus	ATCC 49337
Daomae an opriadae	ATCC 7972
	ATCC 6537
	ATCC 53926
	ATCC 55768
Bacillus licheniformis	ATCC 21039
	ATCC 21667
	ATCC 55614
Bacillus subtilis	ATCC 55614 ATCC 15561
bacıllus subtilis	
Da-illia - addi-	ATCC 21008
Bacillus subtilis	ATCC 15040
Corynebacterium afermentans	
subsp. afermentans	ATCC 51403 ^A
Corynebacterium afermentans subsp. lipophilum	ATCC 51404
Corynebacterium confusum	ATCC 38268 ^A
Corynebacterium coyleae	ATCC 700219
Corynebacterium diphtheriae	ATCC 13812
Corynebacterium falsenii	ATCC BAA- 596 ^A
Corynebacterium freneyi	ATCC 64424 ^B
Corynebacterium imitans	ATCC 700354 ^B
	ATCC 43217
	ATCC 43216
Corynebacterium jeikeium	ATCC 43734
	ATCC BAA-
	949
Corynebacterium minutissimum	ATCC 23348
Corynebacterium resistens	CCUG 50093T
Corynebacterium simulans	ATCC BAA-15

Organism	Strain
Staphylococcus lentus	ATCC 700403
	NRS-879
	ATCC 49576
Staphylococcus lugdunensis	NRS-878
	NRS-880
Staphylococcus muscae	ATCC 49910
Staphylococcus pasteuri	ATCC 51129
Staphylococcus pasteuri (mecC+)	ATCC 51128
Staphylococcus pettenkoferi	DSM-19554
Staphylococcus pseudintermedius	ATCC 49444
Staphylococcus saccharolyticus	ATCC 14953
Stanbulaceasus sapranhutiaus	ATCC 15305
Staphylococcus saprophyticus	ATCC 35552
Otanbuda a a a a a a babitani	ATCC 49545
Staphylococcus schleiferi	ATCC 43808
	ATCC 29060
	ATCC 29061
Staphylococcus sciuri	ATCC 29059
	ATCC 49575
	ATCC 29062
	ATCC 27848
0	ATCC 27850
Staphylococcus simulans	ATCC 31432
	ATCC 27851
Staphylococcus species	ATCC 155
Staphylococcus species (mecA+)	ATCC 27626
Otania da a a a a a a a distribuira	ATCC 51699
Staphylococcus vitulinus	ATCC 51161
Staphylococcus warneri	ATCC 27836
Staphylococcus xylosus	ATCC 49148
Chapity 100000000 Ayroodd	ATCC 29971
Staphylococcus aure	us
	ATCC 25923
	ATCC 29247
	ATCC 6538P
	ATCC 29213
0. 4.4	NR-45889
Staphylococcus aureus	NR-45890
	NR-46074
	NR-45881
	NR-46411
	NR-46414
Staphylococcus aureus	NR-46418
1	L

Organism	Strain
	ATCC BAA-
Corynebacterium striatum	1293
Corynobactorium sunatum	ATCC 43735
	ATCC 7094
Corynebacterium timonense	CCUG 64728 ^A
Corynebacterium ulcerans	ATCC 51799
	ATCC 43044
Corynebacterium urealyticum	ATCC 43042
	ATCC 43043
Corynebacterium ureicelerivorans	CCUG 59144
Cutibacterium acne	s
	ATCC 11827
	ATCC 11828
Cutibacterium acnes	ATCC 33179
	ATCC 6919
Enterococcus	
Enterococcus avium	ATCC 14025
	ATCC 700668
Enterococcus casseliflavus	ATCC 25788
	ATCC 700327
Enterococcus cecorum	ATCC 43198
Enterococcus dispar	ATCC 51266
Enterococcus durans	ATCC 11576
Emerococcus durans	ATCC 51575
	ATCC 700802
	ATCC 10100
	ATCC 10100
	ATCC 12399
	ATCC 14506
Enterococcus faecalis	ATCC 33186
	ATCC 49532
	ATCC 49533
	ATCC 7080
	ATCC 49474
	ATCC 49332
	ATCC 29200 ATCC BAA-
	2128
	ATCC 51188
Enterococcus faecalis	ATCC 49149
	NCTC-775
	ATCC 19433
	ATCC 49452
Enterococcus faecalis (vanA+)	JMI 876745
	ATCC BAA- 2365
Enterococcus faecalis (vanB+)	ATCC 51299
	ATCC 19434
	ATCC 19434 ATCC 23828
	ATCC 27273
Enterococcus faecium	ATCC BAA-
	2127
	ATCC 6057
	ATCC 49624
	ATCC BAA
Enterococcus faecium	ATCC BAA- 472

Organism	Strain
	NR-46417
	NR-13524
	NR-13527
	NR-13525
	NR-13526
	NRS-123
	NR-46805
	NRS-662
	ATCC BAA-
	1707
	ATCC 43300
	NRS-383
	NCTC-12493
	NRS-676
	NRS-678
	NRS-648
	NRS-651
Staphylococcus aureus (mecA+)	NRS-643
Cap.tytoooodo darodo (moority	NRS-484
	NRS-385
	NRS-384
	ATCC BAA-40
	ATCC 700698
	NRS-382
	NRS-659
	NRS-657
	NRS-655
	NRS-654
	NRS-647
	ATCC BAA-42
	ATCC BAA-41
	NRS-483
	NRS-675
	NRS-645
	NRS-687
	NRS-667
	NRS-677
	NRS-683
Staphylococcus aureus (mecA+)	NRS-688
, , ,	NRS-22
	NRS-387
	NRS-70
	ATCC BAA
Staphylococcus aureus (mecC+)	ATCC BAA- 2312
	ATCC BAA- 2313
Staphylococcus epidermi	dis
	ATCC 12228
Stambula aggrega amidi-li-	ATCC 49134
Staphylococcus epidermidis	NCIMB-8853
	ATCC 700583
	ATCC 14990
Staphylococcus epidermidis (mecA+)	ATCC 35983

Organism	Strain
	ATCC 9756
	ATCC 49224
	ATCC BAA-
	2846 ATCC 19953
	ATCC 19933
	ATCC 35667
	ATCC BAA-
	2316 ATCC BAA-
	2317
	ATCC 700221
	ATCC BAA- 2319
	ATCC BAA-
	2320
	LMC 003921 LMC 103676
Enterococcus faecium (vanA+)	LMC 089524
	LMC 104266
	LMC 032261
	LMC 110371
	LMC 002867
	LMC 055971
	ATCC 51559
	ATCC BAA- 2318
Enterococcus faecium (vanB+)	ATCC 51858
Enterococcus gallinarum	ATCC 49573
	ATCC 49609
	ATCC 49610
	ATCC 700425
	ATCC 49608
Enterococcus hirae	ATCC 49479 ATCC 10541
Enterococcus italicus	CCUG 47860
Enterococcus malodoratus	ATCC 43197
Enterococcus pseudoavium	CCUG 33310T
Enterococcus raffinosus	ATCC 49464
Enterococcus saccharolyticus	ATCC 43076
Enterococcus sanguinicola	DSM-21767
Enterococcus faecal	
	ATCC 51575
Entarocacaus foscolis	ATCC 700802
Enterococcus faecalis	ATCC 10100
	ATCC 12399
	ATCC 14506
	ATCC 33186
	ATCC 49532
Enterococcus faecalis	ATCC 49533
	ATCC 7080
	ATCC 49474
	ATCC 49332
Enterococcus faecalis	ATCC 29200

Organism	Strain
3	ATCC 35984
	ATCC 29887
	ATCC 49461
	ATCC 700565
	ATCC 51625
Staphylococcus lugduner	
	NRS-879
Staphylococcus lugdunensis	ATCC 49576
	NRS-878
	NRS-880
Streptococcus	
	ATCC 12401
	ATCC 13813
	ATCC 12386
Streptococcus agalactiae	ATCC 12973
	ATCC 27956
	NCTC-8017
	ATCC 12403
	ATCC 9895
Ctronto a a coura a natina cua	ATCC 33397
Streptococcus anginosus	NCTC-10713
	ATCC 33317
Streptococcus bovis	ATCC 35034
Streptococcus constellatus	ATCC 27513
Streptococcus criceti	ATCC 19642 ^C
Streptococcus criceti	ATCC 35666
Streptococcus dysgalactiae	ATCC 33000 ATCC 43078
Cheptococcus ay sgulachae	ATCC 12394
	ATCC 43079
Streptococcus equi	ATCC 9528
	ATCC 15351
Streptococcus equinus	ATCC 9812
	ATCC 49475
Streptococcus gallolyticus	ATCC 9809
Caroptococcas gamoryticus	ATCC 43144
	ATCC 43144 ATCC 10558
Streptococcus gordonii	ATCC 10558 ATCC 35557
Streptococcus infantarius	ATCC BAA-102
	ATCC BAA-103
Streptococcus infantis	ATCC BAA- 2089
,	ATCC 700779
Streptococcus intermedius	ATCC 27335
Streptococcus mitis	ATCC 15914
,	ATCC 6249
Streptococcus mitis	ATCC 49456
On Optoboods Tillid	NCIMB-13770
Streptococcus oralis	ATCC 35037
Streptococcus oralis	ATCC 55229
	•

Organism	Strain
	ATCC BAA- 2128
	ATCC 51188
	ATCC 49149
	NCTC-775
	ATCC 19433
	ATCC 49452
Enterococcus faecalis (vanA+)	JMI 876745
Enterococcus faecalis (vanB+)	ATCC BAA- 2365
Zineresessas lassame (rainz 1)	ATCC 51299
Enterococcus faeciu	m
	ATCC 19434
	ATCC 23828
	ATCC 27273
	ATCC BAA- 2127
	ATCC 6057
	ATCC 49624
Enterococcus faecium	ATCC 6569
Encrosocias lacolam	ATCC BAA- 472
	ATCC 9756
	ATCC 49224
	ATCC BAA- 2846
	ATCC 19953
	ATCC 27270
	ATCC 35667
Enterococcus faecium (vanA+)	ATCC BAA- 2316 ATCC BAA- 2317
	ATCC 700221
	ATCC BAA- 2319
	ATCC BAA- 2320
	LMC 003921
	LMC 103676
Enterococcus faecium (vanA+)	LMC 089524
	LMC 104266
	LMC 032261
	LMC 110371
	LMC 002867
	LMC 055971
Enterococcus faecium (vanA+)	ATCC 51559

Organism	Strain
Streptococcus parasanguinis	ATCC 15909
Streptococcus peroris	ATCC 700780
	ATCC BAA-475
	ATCC 10357
	ATCC 49619
	ATCC 49136
	ATCC BAA-659
	ATCC 6315
	ATCC BAA- 1667
	ATCC 700674
Streptococcus pneumoniae	ATCC 6321
	ATCC 700673
	ATCC 51916
	ATCC 8338
	ATCC 6301
	ATCC 8335
	NCIMB-13286
	ATCC BAA- 1656
Streptococcus pyogenes	ATCC 12384
	ATCC 49399
	ATCC 12344
	ATCC 19615
	NCIMB-13285
	ATCC 14289
	ATCC 13419 ^C
Streptococcus salivarius	ATCC 7073
	ATCC 25975
Streptococcus salivarius	ATCC 31067 ^C
Streptococcus sanguinis	ATCC 10556
Streptococcus thoraltensis	ATCC 700865
Streptococcus agalactic	ae
	ATCC 12401
	ATCC 13813
	ATCC 12386
Streptococcus agalactiae	ATCC 12973
	ATCC 27956
	NCTC-8017
	ATCC 12403

Ouganiam	Strain
Organism	Strain ATCC BAA-
	2318
Enterococcus faecium (vanB+)	ATCC 51858
Lactobacillus	
	ATCC 334
Lactobacillus casei	ATCC 55825
	ATCC 39392
	ATCC 25598
Lactobacillus paracasei	ATCC BAA-52
	ATCC 27092
Lactobacillus rhamnosus	ATCC 53403
Lactobacillus marninosus	ATCC 53103 ATCC 55915
Lactobacillus zeae	ATCC 55915 ATCC 15820
	ATCC 13020
Listeria	
Listeria innocua	NCTC-11288
	ATCC 33090
	ATCC 19119
Listeria ivanovii	ATCC BAA- 139
	ATCC 700402
	ATCC 10890
	ATCC 19111
	ATCC 13932
	ATCC 19114
Listeria monocytogenes	ATCC 7644
Listeria monocytogenes	ATCC 19112
	ATCC BAA-
	751
	ATCC 19118
	ATCC 19115
Listeria seeligeri	ATCC 35967
Listeria welshimeri	ATCC 35897
Listeria monocytoger	Ì
	ATCC 10890
Listeria monocytogenes	ATCC 19111
	ATCC 13932
Listeria monocytogenes	ATCC 19114
	ATCC 7644
	ATCC 19112
Listeria monocytogenes	ATCC BAA- 751
	ATCC 19118
	ATCC 19118
	ATCC 19115
Micrococcus	
	ATCC 19212
	ATCC 10240
l	ATCC 400
Micrococcus luteus	ATCC 53598
	ATCC 49732
	ATCC 4698
Micrococcus Iylae	ATCC 27566
Micrococcus yunnanensis	ATCC 7468

Organism	Strain
Streptococcus anginosus gr	oup
	ATCC 9895
Streptococcus anginosus	ATCC 33397
	NCTC-10713
Streptococcus constellatus	ATCC 27513
Streptococcus intermedius	ATCC 27335
Streptococcus pneumoni	ae
	ATCC BAA-475
	ATCC 10357
	ATCC 49619
	ATCC 49136
	ATCC BAA-659
	ATCC 6315
	ATCC BAA-
	1667 ATCC 700674
Streptococcus pneumoniae	ATCC 6321
	ATCC 700673
	ATCC 51916
	ATCC 8338
	ATCC 6301
	ATCC 8335
	NCIMB-13286
	ATCC BAA-
	1656
Streptococcus pyogene	s
	ATCC 12384
	ATCC 49399
Streptococcus pyogenes	ATCC 12344
	ATCC 19615
	NCIMB-13285
	ATCC 14289
Pan <i>Candida</i>	ATOO 04400
	ATCC 24433 ATCC MYA-
Candida albicans	4441
	ATCC 14053
Candida albicans	ATCC 90028
	ATCC 66032
	ATCC 15126
Candida glabrata	ATCC MYA- 2950
	ATCC 2001
	ATCC 34135
Candida krusei	ATCC 34195
	ATCC 00018D
Condido perancilesis	ATCC 50018 ^D
Candida parapsilosis	ATCC 32010
Pan Cram Nagativa	ATCC 22019
Pan Gram-Negative	NCTC-13302
Acinetobacter baumannii	NCTC-13302 NCTC-13422
Acinetobacter haemolyticus	ATCC 19002
Admetobacter naemolyticus	A100 19002

Staphylococcus ATCC 43957	Organism	Strain
ATCC 25923 ATCC 29247 ATCC 6538P ATCC 29213 NR-45889 NR-45889 NR-46074 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13525 NR-13526 NRS-622 ATCC BAA-1707 ATCC 43300	Staphylococcus	
ATCC 29247 ATCC 6538P ATCC 29213 NR-45889 NR-45889 NR-45880 NR-46074 NR-45881 NR-46411 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13525 NR-13526 NRS-622 ATCC BAA-1707 ATCC 43300	Staphylococcus arlettae	ATCC 43957
ATCC 6538P ATCC 29213 NR-45889 NR-45880 NR-46074 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		ATCC 25923
ATCC 29213 NR-45889 NR-45890 NR-46074 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13525 NR-13526 Staphylococcus aureus (mecA+) NRS-123 NRS-662 ATCC BAA-1707 ATCC 43300		ATCC 29247
Staphylococcus aureus NR-45889 NR-45890 NR-46074 NR-45881 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13525 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		ATCC 6538P
Staphylococcus aureus NR-45890 NR-46074 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13525 NR-13526 Staphylococcus aureus (mecA+) NRS-123 NRS-662 ATCC BAA-1707 ATCC 43300		ATCC 29213
NR-46074 NR-45881 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13525 NR-13525 NR-13526 NR-13526 NR-13526 NRS-662 ATCC BAA-1707 ATCC 43300		NR-45889
NR-46074 NR-45881 NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13527 NR-13525 NR-13525 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-45890
NR-46411 NR-46414 NR-46418 NR-46417 NR-13524 NR-13527 NR-13525 NR-13525 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300	Staphylococcus aureus	NR-46074
NR-46414 NR-46418 NR-46417 NR-13524 NR-13527 NR-13525 NR-13525 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-45881
NR-46418 NR-46417 NR-13524 NR-13527 NR-13525 NR-13526 NRS-123 NRS-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-46411
NR-46417 NR-13524 NR-13527 NR-13525 NR-13526 NR-13526 NRS-123 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-46414
NR-13524 NR-13527 NR-13525 NR-13526 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-46418
NR-13527 NR-13525 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA- 1707 ATCC 43300		NR-46417
NR-13525 NR-13526 NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-13524
NR-13526 NRS-123 NR-46805 NRS-662 ATCC BAA- 1707 ATCC 43300		NR-13527
Staphylococcus aureus (mecA+) NRS-123 NR-46805 NRS-662 ATCC BAA-1707 ATCC 43300		NR-13525
NR-46805 NRS-662 ATCC BAA- 1707 ATCC 43300		NR-13526
NRS-662 ATCC BAA- 1707 ATCC 43300	Staphylococcus aureus (mecA+)	NRS-123
ATCC BAA- 1707 ATCC 43300		NR-46805
1707 ATCC 43300		NRS-662
ATCC 43300		
NRS-383		
D		NRS-383
Staphylococcus aureus (mecA+) NCTC-12493	Staphylococcus aureus (mecA+)	NCTC-12493
NRS-676		NRS-676
NRS-678		NRS-678
NRS-648		NRS-648
NRS-651		NRS-651
NRS-643		NRS-643
NRS-484		NRS-484
NRS-385	Stonbulgagaga auraua (A.)	NRS-385
Staphylococcus aureus (mecA+) NRS-384	Staphylococcus aureus (mecA+)	NRS-384
ATCC BAA-40		ATCC BAA-40
ATCC 700698		ATCC 700698
NRS-382		NRS-382
NRS-659		NRS-659
NRS-657		NRS-657
Staphylococcus aureus (mecA+) NRS-655	Otanbula and a constant	NRS-655

Organism	Strain
Acinetobacter junii	ATCC 17908
Acinetobacter Iwoffii	ATCC 15309
Acinetobacter ursingii	ATCC BAA-617
Bacteroides fragilis	NCTC-9343
Burkholderia cepacia	ATCC 25416
Cedecea davisiae	ATCC 43025
Citrobacter freundii	NCTC-9750
Citrobacter koseri	ATCC 27156
Cronobacter muytjensii	ATCC 51329
Cronobacter sakazakii	ATCC 12868
Edwardsiella tarda	ATCC 15947
Enterobacter aerogenes	ATCC 13048
Enterobacter amnigenus	ATCC 51816
Enterobacter asburiae	ATCC 35953
	ATCC 13047
	ATCC 23373
Enterobacter cloacae	ATCC 23355
	ATCC 35030
Enterobacter hormaechei	ATCC 700323
Erwinia aphidicola	ATCC 27991
	ATCC 4157
Escherichia coli	ATCC 14948
	ATCC 25922
Escherichia coli	ATCC BAA-196
Escherichia fergusonii	ATCC 35469
Escherichia hermannii	ATCC 700368
Escherichia vulneris	ATCC 33821
Fusobacterium necrophorum	ATCC 25286
Fusobacterium nucleatum	ATCC 25586
	ATCC 10211
Haemophilus influenzae	ATCC 49144
	ATCC 43065
Haemophilus influenzae	NCTC-8468
Haemophilus parainfluenzae	ATCC 9796
Hafnia alvei	ATCC 51815
	ATCC 700324
Klebsiella oxytoca	ATCC 43165
	ATCC 43863
Klebsiella ozaenae	ATCC 11296

Organism	Strain
	NRS-654
	NRS-647
	ATCC BAA-42
	ATCC BAA-41
	NRS-483
	NRS-675
	NRS-645
	NRS-687
	NRS-667
	NRS-677
	NRS-683
	NRS-688
	NRS-22
	NRS-387
	NRS-70
	ATCC 33591
	ATCC BAA- 2312
Staphylococcus aureus (mecC+)	ATCC BAA- 2313
	ATCC 33750
Staphylococcus auricularis	ATCC 33753
	ATCC 27840
Staphylococcus capitis	NRS-866
	ATCC 35661
Staphylococcus caprae	ATCC 51548
Staphylococcus carnosus	ATCC 51365
Staphylococcus chromogenes	ATCC 43764
Staphylococcus cohnii	ATCC 29974
	ATCC 12228
Staphylococcus epidermidis	ATCC 49134
	NCIMB-8853
	ATCC 700583
	ATCC 14990
	ATCC 35983
	ATCC 35984
Staphylococcus epidermidis	ATCC 29887
(mecA+)	ATCC 49461
	ATCC 700565
	-
	ATCC 51625

Organism	Strain
Klebsiella pneumoniae	ATCC BAA- 1706
	NCTC-9633
	NCTC-13440
	ATCC 51503
Kluyvera ascorbata	ATCC 14236
Kluyvera cryocrescens	ATCC 14240
Legionella pneumophila	ATCC 33823
Moraxella catarrhalis	ATCC 23246
Moraxella nonliquefaciens	ATCC 17953
Moraxella osloensis	ATCC 10973
Morganella morganii	ATCC 25829
Neisseria lactamica	ATCC 23970
	ATCC 13090
Al-iiiiti-li-	ATCC 13113
Neisseria meningitidis	ATCC 13077
	ATCC 13102
Neisseria mucosa	ATCC 19695
Neisseria sicca	ATCC 29193
Pantoea agglomerans	ATCC 14537
Pasteurella aerogenes	ATCC 27883
	ATCC 43071
Proteus mirabilis	CDC#0155
	CDC#0159
Proteus penneri	ATCC 35197
Proteus vulgaris	ATCC 6380
Providencia alcalifaciens	ATCC 9886
Providencia rettgeri	ATCC 9919
Providencia stuartii	ATCC 33672
	ATCC 15442
Pseudomonas aeruginosa	NCIMB-12469
	ATCC 10145
Pseudomonas fluorescens	ATCC 13525
Pseudomonas luteola	ATCC 35970
Pseudomonas putida	ATCC 31483
Raoultella terrigena	ATCC 55553
Salmonella bongori	ATCC 43975
Salmonella enterica subsp. enterica	ATCC 51957
Salmonella enterica Choleraesuis	ATCC 12011
Salmonella enterica Paratyphi	FSL S5-0447

Organism	Strain
	ATCC 35539
Otambula ana ana basana batin a	ATCC 29970
Staphylococcus haemolyticus	ATCC 31874
	NRS-62
Staphylococcus haemolyticus (mecA+)	ATCC BAA- 1693
	NRS-69
	NRS-871
Staphylococcus hominis	NRS-870
	ATCC 27844
Ctanbulananus haminia (magal.)	ATCC 700237
Staphylococcus hominis (mecA+)	ATCC 700236
Staphylococcus hyicus	ATCC 11249
Staphylococcus intermedius	ATCC 29663
	ATCC 49052

A. Detected at 2 x 10⁸ CFU/mL

Organism	Strain
Salmonella Typhi	ATCC 19430
Serratia fonticola	ATCC 29844
Serratia liquefaciens	ATCC 27592
	ATCC 8100
Serratia marcescens	ATCC 14756
	ATCC 13880
Serratia odorifera	ATCC 33077
Serratia rubidaea	ATCC 27593
Shigella boydii	ATCC 9207
Shigella dysenteriae	ATCC 13313
Shigella sonnei	ATCC 29930
Stenotrophomonas maltophilia	ATCC 13636
Tatumella ptyseos	ATCC 33302
Yersinia enterocolitica subsp. enterocolitica	ATCC 9610

C. Detected at 4 x 108 CFU/mL

Predicted (in silico) Reactivity for Genus and Group Assays

Note: the performance of the cobas eplex BCID-GP panel has not been established for all of the organisms listed in the tables below. See the Analytical Reactivity (Inclusivity) and Limit of Detection (Analytical Sensitivity) sections for data on organisms for which performance characteristics have been established (indicated with an asterisk in Tables 57-68). Some species were not assessed *in silico* due to lack of sequence data, though they may appear in the analytical sensitivity or specificity studies.

In addition to species-specific assays, the **cobas eplex** BCID-GP panel contains a number of broader genus or group-level assays; including *Bacillus cereus* group, *Bacillus subtilis* group, *Corynebacterium, Enterococcus, Lactobacillus, Listeria, Micrococcus, Staphylococcus, Streptococcus, Streptococcus anginosus* group, Pan *Candida* and Pan Gram-Negative assays. **Tables 57-68** summarize the predicted (*in silico*) reactivity (inclusivity) for these assay targets.

Table 57: Predicted (in silico) Reactivity (Inclusivity) Results for Bacillus cereus group

Detection Predicted for ≥95% of target sequences				
Bacillus thuringiensis*	Bacillus toyonensis	Bacillus weihenstephanensis		
Detection Predicted for 85%-94% of target sequences				
Bacillus cereus*				
Detection Predicted for <85% of target sequences				
None Identified				
Detection Not Predicted				
Bacillus mycoides*	Bacillus pseudomycoides			

B. Detected at 2 x 109 CFU/mL

D. Detected at 1 x 107 CFU/mL

Table 58: Predicted (in silico) Reactivity (Inclusivity) Results for Bacillus subtilis group

Detection Predicted for ≥95% of target sequences			
Bacillus subtilis*	Bacillus licheniformis*	Bacillus siamensis	
Bacillus amyloliquefaciens*	Bacillus methylotrophicus / Bacillus velezensis	Bacillus tequilensis	
Bacillus atrophaeus*	Bacillus paralicheniformis	Bacillus vallismortis	
Detection Predicted for 85%-94% of target sequences			
None Identified			
Detection Predicted for <85% of target sequences			
Bacillus mojavensis (77.8%)	Bacillus sonorensis (83.3%)		
Detection Not Predicted			
None Identified			

Table 59: Predicted (in silico) Reactivity (Inclusivity) Results for Corynebacterium

Detection Predicted for ≥95% of target sequences				
Corynebacterium afermentans	Corynebacterium glaucum	Corynebacterium renale		
Corynebacterium afermentans subsp. afermentans*	Corynebacterium halotolerans	Corynebacterium simulans*		
Corynebacterium afermentans subsp. lipophilium*	Corynebacterium hansenii	Corynebacterium singulare		
Corynebacterium appendicis	Corynebacterium humireducens	Corynebacterium sputi		
Corynebacterium auris	Corynebacterium imitans*	Corynebacterium striatum*		
Corynebacterium auriscanis	Corynebacterium lipophiloflavum	Corynebacterium suicordis		
Corynebacterium camporealensis	Corynebacterium Iowii	Corynebacterium terpenotabidum		
Corynebacterium casei	Corynebacterium marinum	Corynebacterium testudinoris		
Corynebacterium ciconiae	Corynebacterium massiliense	Corynebacterium timonense*		
Corynebacterium coyleae*	Corynebacterium minutissimum*	Corynebacterium tuscaniense		
Corynebacterium doosanense	Corynebacterium mucifaciens	Corynebacterium ulceribovis		
Corynebacterium falsenii*	Corynebacterium mycetoides	Corynebacterium urealyticum*		
Corynebacterium felinum	Corynebacterium nuruki	Corynebacterium ureicelerivorans*		
Corynebacterium freneyi*	Corynebacterium oculi	Corynebacterium xerosis		
Corynebacterium genitalium	Corynebacterium pilosum			
Detection	n Predicted for 85%-94% of target s	equences		
	None Identified			
Detection Predicted for <85% of target sequences				
Corynebacterium aurimucosum (50.0%)	Corynebacterium jeikeium (38.7%) * ^A	Corynebacterium variabile (75.0%)		
Corynebacterium diphtheriae (76.4%)*	Corynebacterium ulcerans (47.4%)* ^A	Corynebacterium vitaeruminis (75.0%)		
Detection Not Predicted				

Corynebacterium accolens	Corynebacterium epidermidicanis	Corynebacterium propinquum
Corynebacterium ammoniagenes	Corynebacterium flavescens	Corynebacterium pseudodiphtheriticum
Corynebacterium amycolatum	Corynebacterium frankenforstense	Corynebacterium pseudogenitalium
Corynebacterium aquilae	Corynebacterium freiburgense	Corynebacterium pseudotuberculosis
Corynebacterium argentoratense	Corynebacterium glucuronolyticum	Corynebacterium pyruviciproducens
Corynebacterium atypicum	Corynebacterium glutamicum	Corynebacterium resistens
Corynebacterium bovis	Corynebacterium glyciniphilum	Corynebacterium riegelii
Corynebacterium callunae	Corynebacterium kroppenstedtii	Corynebacterium sphenisci
Corynebacterium capitovis	Corynebacterium kutscheri	Corynebacterium spheniscorum
Corynebacterium caspium	Corynebacterium lactis	Corynebacterium stationis
Corynebacterium confusum	Corynebacterium lubricantis	Corynebacterium sundsvallense
Corynebacterium crenatum	Corynebacterium maris	Corynebacterium thomssenii
Corynebacterium cystitidis	Corynebacterium mastitidis	Corynebacterium tuberculostearicum
Corynebacterium deserti	Corynebacterium matruchotii	Corynebacterium uropygiale
Corynebacterium durum	Corynebacterium mustelae	Corynebacterium uterequi
Corynebacterium efficiens	Corynebacterium phocae	

A. 38.7% of sequences in NCBI for *C. jeikeium* were predicted to be detected bioinformatically; 47.4% of sequences in NCBI for *C. ulcerans* were predicted to be detected bioinformatically. All strains tested for these species were detected as a part of the Analytical Reactivity (Inclusivity) or Limit of Detection (Analytical Sensitivity) studies.

Table 60: Predicted (in silico) Reactivity (Inclusivity) Results for Enterococcus

Detection Predicted for ≥95% of target sequences				
Enterococcus avium*	Enterococcus flavescens	Enterococcus raffinosus		
Enterococcus dispar*	Enterococcus italicus*	Enterococcus saccharolyticus*		
Enterococcus durans	Enterococcus lactis	Enterococcus thailandicus		
Enterococcus faecalis*	Enterococcus malodoratus			
Enterococcus faecium*	Enterococcus pseudoavium			
Detection Predicted for 85%-94% of target sequences				
Enterococcus casseliflavus	Enterococcus gallinarum			
Enterococcus cecorum	Enterococcus hirae*			
Detection Predicted for <85% of target sequences				
Enterococcus mundtii (9.1%)				
Detection Not Predicted				
Enterococcus aquimarinus	Enterococcus hawaiiensis	Enterococcus rotai		
Enterococcus asini	Enterococcus hermanniensis	Enterococcus silesiacus		
Enterococcus caccae	Enterococcus pallens	Enterococcus sulfureus		

Enterococcus camelliae	Enterococcus pernyi	Enterococcus termitis
Enterococcus canintestini	Enterococcus phoeniculicola	Enterococcus ureasiticus
Enterococcus canis	Enterococcus plantarum	Enterococcus ureilyticus
Enterococcus columbae	Enterococcus quebecensis	Enterococcus villorum
Enterococcus devriesei	Enterococcus ratti	
Enterococcus haemoperoxidus	Enterococcus rivorum	

Table 61: Predicted (in silico) Reactivity (Inclusivity) Results for Lactobacillus

Detection Predicted for ≥95% of target sequences		
Lactobacillus casei*	Lactobacillus rhamnosus*	
Lactobacillus paracasei*	Lactobacillus zeae*	
Detection	n Predicted for 85%-94% of target	sequences
	None Identified	
Detecti	on Predicted for <85% of target se	quences
	None Identified	
	Detection Not Predicted	
Lactobacillus acetotolerans	Lactobacillus ghanensis	Lactobacillus panis
Lactobacillus acidifarinae	Lactobacillus gigeriorum	Lactobacillus pantheris
Lactobacillus acidipiscis	Lactobacillus ginsenosidimutans	Lactobacillus parabrevis
Lactobacillus acidophilus	Lactobacillus gorillae	Lactobacillus parabuchneri
Lactobacillus agilis	Lactobacillus graminis	Lactobacillus paracollinoides
Lactobacillus algidus	Lactobacillus hammesii	Lactobacillus parafarraginis
Lactobacillus alimentarius	Lactobacillus hamsteri	Lactobacillus parakefiri
Lactobacillus amylolyticus	Lactobacillus harbinensis	Lactobacillus paralimentarius
Lactobacillus amylophilus	Lactobacillus hayakitensis	Lactobacillus paraplantarum
Lactobacillus amylotrophicus	Lactobacillus heilongjiangensis	Lactobacillus pasteurii
Lactobacillus amylovorus	Lactobacillus helsingborgensis	Lactobacillus paucivorans
Lactobacillus animalis	Lactobacillus helveticus	Lactobacillus pentosus
Lactobacillus antri	Lactobacillus herbarum	Lactobacillus perolens
Lactobacillus apinorum	Lactobacillus hilgardii	Lactobacillus plantarum
Lactobacillus apis	Lactobacillus hokkaidonensis	Lactobacillus pobuzihii
Lactobacillus apodemi	Lactobacillus hominis	Lactobacillus pontis
Lactobacillus aquaticus	Lactobacillus homohiochii	Lactobacillus psittaci
Lactobacillus aviarius	Lactobacillus hordei	Lactobacillus rapi
Lactobacillus backii	Lactobacillus iners	Lactobacillus rennini
Lactobacillus bifermentans	Lactobacillus ingluviei	Lactobacillus reuteri
Lactobacillus bombi	Lactobacillus intestinalis	Lactobacillus rodentium
Lactobacillus bombicola	Lactobacillus jensenii	Lactobacillus rossiae

		1
Lactobacillus brantae	Lactobacillus johnsonii	Lactobacillus ruminis
Lactobacillus brevis	Lactobacillus kalixensis	Lactobacillus saerimneri
Lactobacillus buchneri	Lactobacillus kefiranofaciens	Lactobacillus sakei
Lactobacillus cacaonum	Lactobacillus kefiri	Lactobacillus salivarius
Lactobacillus camelliae	Lactobacillus kimbladii	Lactobacillus sanfranciscensis
Lactobacillus capillatus	Lactobacillus kimchicus	Lactobacillus saniviri
Lactobacillus ceti	Lactobacillus kimchiensis	Lactobacillus satsumensis
Lactobacillus coleohominis	Lactobacillus kisonensis	Lactobacillus secaliphilus
Lactobacillus collinoides	Lactobacillus kitasatonis	Lactobacillus selangorensis
Lactobacillus composti	Lactobacillus koreensis	Lactobacillus senioris
Lactobacillus concavus	Lactobacillus kullabergensis	Lactobacillus senmaizukei
Lactobacillus coryniformis	Lactobacillus kunkeei	Lactobacillus sharpeae
Lactobacillus crispatus	Lactobacillus letivazi	Lactobacillus shenzhenensis
Lactobacillus crustorum	Lactobacillus lindneri	Lactobacillus silagei
Lactobacillus curieae	Lactobacillus malefermentans	Lactobacillus siliginis
Lactobacillus curvatus	Lactobacillus mali	Lactobacillus similis
Lactobacillus delbrueckii	Lactobacillus manihotivorans	Lactobacillus spicheri
Lactobacillus dextrinicus	Lactobacillus mellifer	Lactobacillus sucicola
Lactobacillus diolivorans	Lactobacillus mellis	Lactobacillus suebicus
Lactobacillus equi	Lactobacillus melliventris	Lactobacillus sunkii
Lactobacillus equicursoris	Lactobacillus mindensis	Lactobacillus suntoryeus
Lactobacillus equigenerosi	Lactobacillus mucosae	Lactobacillus taiwanensis
Lactobacillus fabifermentans	Lactobacillus murinus	Lactobacillus thailandensis
Lactobacillus farciminis	Lactobacillus nagelii	Lactobacillus tucceti
Lactobacillus farraginis	Lactobacillus namurensis	Lactobacillus ultunensis
Lactobacillus fermentum	Lactobacillus nantensis	Lactobacillus uvarum
Lactobacillus floricola	Lactobacillus nasuensis	Lactobacillus vaccinostercus
Lactobacillus florum	Lactobacillus nodensis	Lactobacillus vaginalis
Lactobacillus fructivorans	Lactobacillus odoratitofui	Lactobacillus versmoldensis
Lactobacillus frumenti	Lactobacillus oeni	Lactobacillus vini
Lactobacillus fuchuensis	Lactobacillus oligofermentans	Lactobacillus wasatchensis
Lactobacillus futsaii	Lactobacillus oris	Lactobacillus xiangfangensis
Lactobacillus gallinarum	Lactobacillus oryzae	Lactobacillus zymae
Lactobacillus gasseri	Lactobacillus otakiensis	-
	Lactobacillus ozensis	
Lactobacillus farraginis Lactobacillus fermentum Lactobacillus floricola Lactobacillus florum Lactobacillus fructivorans Lactobacillus frumenti Lactobacillus fuchuensis Lactobacillus futsaii Lactobacillus gallinarum	Lactobacillus namurensis Lactobacillus nantensis Lactobacillus nasuensis Lactobacillus nodensis Lactobacillus odoratitofui Lactobacillus oeni Lactobacillus oligofermentans Lactobacillus oris Lactobacillus oryzae Lactobacillus otakiensis	Lactobacillus ultunensis Lactobacillus uvarum Lactobacillus vaccinostercus Lactobacillus vaginalis Lactobacillus versmoldensis Lactobacillus vini Lactobacillus wasatchensis Lactobacillus xiangfangensis

Table 62: Predicted (in silico) Reactivity (Inclusivity) Results for Listeria

rance of the analytical and the analytical and the first a			
Detection Predicted for ≥95% of target sequences			
Listeria monocytogenes*	Listeria marthii	Listeria welshimeri*	
Listeria ivanovii*	Listeria seeligeri*		
Detection P	Detection Predicted for 85%-94% of target sequences		
Listeria innocua*			
Detection Predicted for <85% of target sequences			
None Identified			
Detection Not Predicted			
Listeria grayi			

Table 63: Predicted (in silico) Reactivity (Inclusivity) Results for Micrococcus

Table 66.1 Todistou (iii oimoo) ttoucitytty (iiiciaelytty) ttoucito for iiiiciaelou		
Detection Predicted for ≥95% of target sequences		
Micrococcus luteus*	Micrococcus aquilus	Micrococcus yunnanensis*
Micrococcus alkanovora	Micrococcus flavus	
Micrococcus aloeverae	Micrococcus thailandicus	
Detection Predicted for 85%-94% of target sequences		
Micrococcus endophyticus	Micrococcus indicus	
Detection Predicted for <85% of target sequences		
Micrococcus Iylae (50.0%)*		
Detection Not Predicted		
Micrococcus antarcticus	Micrococcus lactis	
Micrococcus chenggongense	Micrococcus terreus	

Table 64: Predicted (in silico) Reactivity (Inclusivity) Results for Staphylococcus

Detection Predicted for ≥95% of target sequences		
Staphylococcus aureus*	Staphylococcus haemolyticus*	Staphylococcus pseudintermedius*
Staphylococcus agnetis	Staphylococcus hominis*	Staphylococcus pseudolugdunensis
Staphylococcus argensis	Staphylococcus hominis subsp. novobiosepticus	Staphylococcus pulvereri
Staphylococcus argenteus	Staphylococcus hyicus*	Staphylococcus rostri
Staphylococcus auricularis*	Staphylococcus jettensis	Staphylococcus saprophyticus*
Staphylococcus capitis*	Staphylococcus kloosii	Staphylococcus schleiferi*
Staphylococcus caprae*	Staphylococcus lentus*	Staphylococcus schweitzeri
Staphylococcus carnosus*	Staphylococcus lugdunensis*	Staphylococcus sciuri*
Staphylococcus chromogenes*	Staphylococcus lutrae	Staphylococcus simiae
Staphylococcus cohnii*	Staphylococcus massiliensis	Staphylococcus simulans*
Staphylococcus delphini	Staphylococcus microti	Staphylococcus stepanovicii

Staphylococcus devriesei	Staphylococcus muscae*	Staphylococcus succinus
Staphylococcus epidermidis*	Staphylococcus nepalensis	Staphylococcus vitulinus*
Staphylococcus equorum	Staphylococcus pasteuri*	Staphylococcus warneri *
Staphylococcus felis	Staphylococcus petrasii	Staphylococcus xylosus*
Staphylococcus fleurettii	Staphylococcus pettenkoferi*	
Staphylococcus gallinarum*	Staphylococcus piscifermentans	
Detection Predicted for 85%-94% of target sequences		
Staphylococcus arlettae	Staphylococcus intermedius*	
Staphylococcus condimenti	Staphylococcus saccharolyticus*	
Detection Predicted for <85% of target sequences		
None Identified		
Detection Not Predicted		
Staphylococcus caseolyticus ^A		

A. Data for only one strain available in NCBI.

Table 65: Predicted (in silico) Reactivity (Inclusivity) Results for Streptococcus

Detection Predicted for ≥95% of target sequences		
Streptococcus agalactiae*	Streptococcus infantarius*	Streptococcus phocae
Streptococcus alactolyticus	Streptococcus infantis*	Streptococcus pneumoniae*
Streptococcus anginosus*	Streptococcus intermedius*	Streptococcus porcinus
Streptococcus australis	Streptococcus intestinalis	Streptococcus porcorum
Streptococcus caballi	Streptococcus lactarius	Streptococcus pseudopneumoniae
Streptococcus constellatus*	Streptococcus loxodontisalivarius	Streptococcus pseudoporcinus
Streptococcus criceti*	Streptococcus luteciae	Streptococcus pyogenes*
Streptococcus cristatus	Streptococcus lutetiensis	Streptococcus rifensis
Streptococcus danieliae	Streptococcus macedonicus	Streptococcus rubneri
Streptococcus dentasini	Streptococcus marimammalium	Streptococcus salivarius*
Streptococcus dentisani	Streptococcus massiliensis	Streptococcus saliviloxodontae
Streptococcus didelphis	Streptococcus mitis*	Streptococcus sanguinis*
Streptococcus difficilis	Streptococcus moroccensis	Streptococcus seminale
Streptococcus dysgalactiae subsp. dysgalactiae	Streptococcus oligofermentans	Streptococcus sinensis
Streptococcus dysgalactiae subsp. equisimilis	Streptococcus oralis*	Streptococcus suis
Streptococcus dysgalactiae*	Streptococcus oricebi	Streptococcus thermophilus
Streptococcus equi*	Streptococcus orisratti	Streptococcus thoraltensis*
Streptococcus equinus*	Streptococcus panodentis	Streptococcus tigurinus
Streptococcus fryi	Streptococcus parasanguinis*	Streptococcus troglodytae

Streptococcus gallolyticus*	Streptococcus parasuis	Streptococcus troglodytidis
Streptococcus gordonii*	Streptococcus parauberis	Streptococcus urinalis
Streptococcus himalayensis	Streptococcus pasteuri	Streptococcus ursoris
Streptococcus hongkongensis	Streptococcus pasteurianus	Streptococcus vestibularis
Streptococcus hyointestinalis	Streptococcus peroris*	Streptococcus waiu
Detection	Predicted for 85%-94% of target	sequences
Streptococcus bovis*	Streptococcus uberis	
Detection	on Predicted for <85% of target se	equences
Streptococcus canis (15.8%)	Streptococcus henryi (10.0%)	Streptococcus ratti (75.0%)
Streptococcus halichoeri (66.7%)	Streptococcus iniae (6.9%)	
Detection Not Predicted		
Streptococcus acidominimus	Streptococcus entericus	Streptococcus oriloxodontae
Streptococcus azizii	Streptococcus ferus	Streptococcus orisasini
Streptococcus cameli	Streptococcus gallinaceus	Streptococcus orisuis
Streptococcus castoreus	Streptococcus hyovaginalis	Streptococcus ovis
Streptococcus cremoris	Streptococcus ictaluri	Streptococcus pharyngis
Streptococcus criae	Streptococcus lactis	Streptococcus pluranimalium
Streptococcus cuniculi	Streptococcus macacae	Streptococcus plurextorum
Streptococcus dentapri	Streptococcus marmotae	Streptococcus plutanimalium
Streptococcus dentiloxodontae	Streptococcus merionis	Streptococcus porci
Streptococcus dentirousetti	Streptococcus milleri	Streptococcus rupicaprae
Streptococcus devriesei	Streptococcus minor	Streptococcus sobrinus
Streptococcus downei	Streptococcus mutans	Streptococcus tangierensis
t		

Table 66: Predicted (in silico) Reactivity (Inclusivity) Results for Streptococcus anginosus group

Detection Predicted for ≥95% of target sequences		
Streptococcus anginosus*	Streptococcus constellatus*	Streptococcus intermedius*
Detec	tion Predicted for 85%-94% of target	sequences
None Identified		
Detection Predicted for <85% of target sequences		
None Identified		
Detection Not Predicted		
None Identified		

Table 67: Predicted (in silico) Reactivity (Inclusivity) Results for Pan Candida

Detection Predicted for ≥95% of target sequences			
Candida albicans*	Candida glabrata*	Candida krusei*	
Candida parapsilosis*			
Detect	Detection Predicted for 85%-94% of target sequences		
None Identified			
Detection Predicted for <85% of target sequences			
None Identified			
Detection Not Predicted			
Candida lusitaniae*	Candida orthopsilosis*		
Candida metapsilosis*	Candida tropicalis*		

Table 68: Predicted (in silico) Reactivity (Inclusivity) Results for Pan Gram-Negative

The Pan Gram-Negative assay was designed to be broadly inclusive of the majority of gram-negative organisms.

Analytical Specificity (Cross-Reactivity and Exclusivity)

Cross-reactivity of on-panel and off-panel analytes was evaluated with the BCID-GP panel. Bacterial targets were tested in triplicate at a concentration of $\geq 1 \times 10^9$ CFU/mL while fungi were tested in triplicate at a concentration of $\geq 1 \times 10^7$ CFU/mL. If the target concentration could not be reached, the organism was diluted 2-fold from stock for use.

No cross reactivity was observed for any of the on-panel gram-positive organisms. Three organisms showed cross-reactivity, *Burkholderia cepacia* cross reacts with the *Corynebacterium* assay at levels ≥1x10⁷ CFU/mL, an unspeciated *Rhodococcus* strain (ATCC 49988) cross reacts with the *Micrococcus* assay at levels ≥1x10⁷ CFU/mL and *Bacillus badius* cross reacts with the *Bacillus subtilis* group assay at 7 x 10⁷ CFU/mL. See **Table 55** and **Table 56** for summaries of the on-panel strains tested as a part of the Limit of Detection (Analytical Sensitivity) and Analytical Reactivity (Inclusivity) studies and **Table 69** for a summary of off-panel strains tested.

Off-panel Exclusivity

Table 69: Targets Assessed for Cross-Reactivity with the cobas eplex BCID-GP panel (Exclusivity)

Organism	Strain ID
Abiotrophia defectiva	ATCC 49176
Actinomyces odontolyticus	ATCC 17929
Aerococcus sanguinicola	ATCC BAA-465
Aerococcus urinae	ATCC 700306
Aerococcus viridans	ATCC 10400
Anaerococcus prevotii	ATCC 9321
Arcanobacterium bernardiae	ATCC 51728

Organism	Strain ID
Granulicatella elegans	ATCC 700633 ^C
Kocuria kristinae	ATCC BAA-752
Kocuria rhizophila	ATCC 9341
Kytococcus sedentarius	ATCC 27575
Lactococcus garvieae	ATCC 43921 ^D
Lactococcus lactis	ATCC 49032
Leuconostoc carnosum	ATCC 49367

Organism	Strain ID
Arcanobacterium haemolyticum	ATCC BAA-1784 ^A
Arthrobacter psychrolactophilus	ATCC 700733
Aspergillus fumigatus	ATCC 204305 ^B
Bacillus badius	ATCC 14574
Bacillus pumilus	ATCC 14884
Brochothrix thermosphacta	ATCC 11509
Candida lusitaniae	ATCC 34449
Candida metapsilosis	ATCC 96144
Candida orthopsilosis	ATCC 96139
Candida tropicalis	ATCC 1369
Carnobacterium divergens	ATCC 35677
Carnobacterium maltaromaticum	ATCC 27865 ^C
Cellulomonas turbata	ATCC 25835
Cellulosimicrobium cellulans	ATCC 27402
Clostridium clostridioforme	ATCC 25537
Clostridium perfringens	ATCC 13124
Clostridium ramosum	ATCC 25582
Cryptococcus gattii	ATCC 76108
Cryptococcus grubii	ATCC 208821
Cryptococcus neoformans	ATCC 14116
Cutibacterium granulosum	ATCC 11829
Erysipelothrix rhusiopathiae	ATCC 35457
Gemella haemolysans	ATCC 10379
Gemella morbillorum	ATCC 27824
Geotrichum capitatum	ATCC 10663
Granulicatella adiacens	ATCC 43205

Organism	Strain ID
Leuconostoc citreum	ATCC 13146
Leuconostoc mesenteroides	ATCC 8293
Macrococcus caseolyticus	ATCC 29750
Macrococcus caseolyticus	ATCC 51834
Mycobacterium avium complex	ATCC 15769
Mycobacterium fortuitum	ATCC 6841
Mycobacterium mucogenicum	ATCC 49650
Mycobacterium tuberculosis	ATCC 25177
Mycoplasma pneumoniae	ATCC 39505
Pediococcus acidilactici	ATCC 8042
Pediococcus pentosaceus	ATCC 33316
Penicillium marneffei	ATCC 200050
Peptostreptococcus anaerobius	ATCC 27337
Planococcus species	ATCC 35671
Propionibacterium propionicum	ATCC 14157
Rhodococcus equi	ATCC 6939
Rhodococcus species	ATCC 49988
Rhodotorula glutinis	ATCC 32766
Rhodotorula minuta	ATCC 36236
Rhodotorula mucilaginosa	ATCC 9449
Rothia dentocariosa	ATCC 31918
Rothia mucilaginosa	ATCC 25296
Saccharomyces cerevisiae	ATCC 18824
Trichosporon asahii	ATCC 201110
Vagococcus fluvialis	ATCC 49515
Weissella paramesenteroides	ATCC 33313

- C. Final testing concentration of 3.63x108 CFU/mL
- D. Final testing concentration of 2.78x108 CFU/mL

Bottle Positivity

Several representative bacterial and fungal organisms were spiked into blood culture bottles along with the manufacturer's recommended volume of human whole blood and grown to positivity in a commercially-available continuously monitoring blood culture system. Bottles were removed from the incubator within two hours of being identified as positive as well as eight hours after bottle positivity. At least two independent positive blood culture replicates were quantified for each organism on culture plates. Organisms tested and approximate bottle positivity concentrations are summarized in **Table 70**. Concentrations shown below represent approximate levels that may be observed in a clinical setting. All estimated bottle positivity concentrations are equivalent or greater than the established Limit of Detection (LOD) for each of the assays of the **cobas eplex** BCID-GP panel.

A. Final testing concentration of 4.05x108 CFU/mL

B. Final testing concentration of 2.5x10⁶ CFU/mL

Table 70: Bottle Positivity Concentrations

Organism	Strain ID	Mean Bottle Positivity Concentration	Mean Bottle Positivity +8 hours Concentration			
Gram-positive Organisms						
Corynebacterium striatum	ATCC BAA-1293	4.5 x 10 ⁶ CFU/mL	2.7 x 10 ⁹ CFU/mL			
Cutibacterium acnes (P. acnes)	ATCC 6919	3.0 x 10 ⁸ CFU/mL	3.5 x 10 ⁸ CFU/mL			
Enterococcus faecium	ATCC BAA-2317	4.9 x 10 ⁷ CFU/mL	3.6 x 10 ⁷ CFU/mL			
Lactobacillus casei	ATCC 39392	4.8 x 10 ⁷ CFU/mL	3.1 x 10 ¹¹ CFU/mL			
Staphylococcus aureus	NRS 483	2.8 x 10 ⁷ CFU/mL	2.1 x 10 ⁷ CFU/mL			
Streptococcus anginosus	ATCC 33397	4.1 x 10 ⁷ CFU/mL	4.0 x 108 CFU/mL			
	Gram-negative	Organisms				
Acinetobacter baumannii	NCTC 13301	4.4 x 108 CFU/mL	3.8 x 10 ⁸ CFU/mL			
Bacteroides fragilis	ATCC 700786	4.7 x 108 CFU/mL	6.7 x 10 ⁹ CFU/mL			
Enterobacter cloacae	NCTC 13464	2.8 x 108 CFU/mL	7.7 x 108 CFU/mL			
Escherichia coli	NCTC 13476	2.3 x 108 CFU/mL	1.5 x 10 ⁹ CFU/mL			
Fusobacterium nucleatum	ATCC 31647	6.5 x 10 ⁷ CFU/mL	4.9 x 108 CFU/mL			
Haemophilus influenzae	ATCC 19418	6.9 x 108 CFU/mL	1.2 x 10 ⁹ CFU/mL			
Klebsiella oxytoca	CDC #0147	9.3 x 10 ⁸ CFU/mL	1.5 x 10 ⁹ CFU/mL			
Neisseria meningitidis	ATCC 13102	3.1 x 10 ⁷ CFU/mL	2.1 x 108 CFU/mL			
Pseudomonas aeruginosa	NCTC 13476	1.6 x 108 CFU/mL	8.4 x 10 ⁸ CFU/mL			
Serratia marcescens	ATCC 14041	1.2 x 10 ⁹ CFU/mL	2.2 x 10 ⁹ CFU/mL			
	Fungal Organism					
Candida albicans	ATCC 90082	1.6 x 10 ⁶ CFU/mL	1.4 x 10 ⁶ CFU/mL			

Reproducibility

Four positive mixes including 9 on-panel organisms and 3 antibiotic resistance genes representing 15 targets at two concentrations and one negative mix including an off-panel organism were tested. Two positive mixes were prepared by spiking cultured isolates into negative sample matrix in BD BACTEC Standard/10 Aerobic/F blood culture bottles at concentrations reflecting those observed at time of bottle positivity plus 8 hours (BP+8) and time of bottle positivity (BP). For the remaining two positive mixes, *Cutibacterium acnes* was grown in BD BACTEC Standard/10 Aerobic/F blood culture bottles until BP and BP+8, then cultured isolates for the remaining organisms were spiked in at concentrations reflecting those observed at BP and BP+8. The negative mix contained *Cutibacterium granulosum* grown in BD BACTEC Lytic/10 Anaerobic/F blood culture bottles to BP and BP+8, which is expected to yield a negative result. Bottle concentrations used in this study are summarized in **Table 71**. Each of the four positive mixes at two concentrations and the one negative mix were tested a minimum of 108 times. Testing occurred at three sites, with two operators testing the mixes over six days using three cartridge lots. For the negative mix, agreement with the expected negative result was 100% for all targets in the **cobas eplex** BCID-GP panel, except Pan Gram-Negative at 99.1%.

Table 71: Bottle Positivity Concentrations

Organism	Bottle Positivity Concentration	Bottle Positivity +8 Hours Concentration
Corynebacterium striatum	4 x 10 ⁶ CFU/mL	1 x 108 CFU/mL
Cutibacterium acnes (P. acnes)	1 x 108 CFU/mL	4.4 x 10 ⁷ CFU/mL
Enterococcus faecium (vanA+)	1 x 10 ⁷ CFU/mL	1 x 108 CFU/mL
Enterococcus faecalis (vanB+)	1 x 10 ⁷ CFU/mL	1 x 108 CFU/mL
Lactobacillus casei	1 x 10 ⁷ CFU/mL	1 x 108 CFU/mL
Staphylococcus aureus (mecA+)	1 x 10 ⁷ CFU/mL	1 x 108 CFU/mL
Streptococcus anginosus	1 x 10 ⁷ CFU/mL	1 x 10 ⁸ CFU/mL
Candida albicans (Pan Candida target)	1 x 10 ⁶ CFU/mL	1 x 10 ⁷ CFU/mL
Klebsiella pneumoniae (Pan Gram-Negative target)	1 x 108 CFU/mL	1 x 10 ⁹ CFU/mL

The percent agreement of each target with the expected result is summarized in **Tables 72-86**. The **cobas eplex** BCID-GP panel demonstrates a high level of agreement with the expected results.

Table 72: Percent Agreement for Corynebacterium

Concentration of	Site	Agreer	nent with Expec	ted Results
Corynebacterium striatum	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	35/36	97.2	(85.8-99.5)
Bottle Positive	2	35/36	97.2	(85.8-99.5)
(4x10 ⁶ CFU/mL)	3	33/36	91.7	(78.2-97.1)
	AII	103/108	95.4	(89.6-98.0)
	1	108/108	100	(96.6-100)
Negative	2	107/108	99.1	(94.9-99.8)
	3	107/107	100	(96.5-100)
	All	322/323	99.7	(98.3-99.9)

CI=Confidence Interval

Table 73: Percent Agreement for Cutibacterium acnes (Propionibacterium acnes)

Concentration of	0:4-	Agreement with Expected Results		
Cutibacterium acnes	Site	Agreed / N	%	95% CI
	1	32/36	88.9	(74.7-95.6)
Bottle Positive + 8 Hours	2	33/36	91.7	(78.2-97.1)
(4.4x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	101/108	93.5 ^A	(87.2-96.8)
	1	36/36	100	(90.4-100)
Bottle Positive	2	33/36	91.7	(78.2-97.1)
(1.1x10 ⁸ CFU/mL)	3	35/36	97.2	(85.8-99.5)
	All	104/108	96.3 ^B	(90.9-98.6)
	1	108/108	100	(96.6-100)
Negative	2	108/108	100	(96.6-100)
Медашче	3	107/107	100	(96.5-100)
	All	323/323	100	(98.8-100)

A. <95% agreement is expected because the *C. acnes* organism concentration is more than 0.5 log below the limit of detection of this assay (1.0 x 10⁸ CFU/mL).

Table 74: Percent Agreement for Enterococcus

Concentration of	0:1-	Agreer	nent with Expec	ted Results
Enterococcus	Site	Agreed / N	%	95% CI
	1	72/72	100	(94.9-100)
Bottle Positive + 8 Hours	2	72/72	100	(94.9-100)
(1x108 CFU/mL)	3	72/72	100	(94.9-100)
	All	216/216	100	(98.3-100)
	1	72/72	100	(94.9-100)
Bottle Positive	2	72/72	100	(94.9-100)
(1x10 ⁷ CFU/mL)	3	72/72	100	(94.9-100)
	All	216/216	100	(98.3-100)
Negative	1	36/36	100	(90.4-100)
	2	36/36	100	(90.4-100)
	3	35/35	100	(90.1-100)
	All	107/107	100	(96.5-100)

B. 95% agreement is expected because the *C. acnes* organism concentration is approximately equal to the limit of detection of this assay (1.0 x 10⁸ CFU/mL).

Table 75: Percent Agreement for Enterococcus faecalis

Concentration of	Cita	Agreement with Expected Results		
Enterococcus faecalis	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
,	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
	3	107/107	100	(96.5-100)
	All	323/323	100	(98.8-100)

Table 76: Percent Agreement for Enterococcus faecium

Concentration of	centration of		Agreement with Expected Results		
Enterococcus faecium	Site	Agreed / N	%	95% CI	
	1	36/36	100	(90.4-100)	
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)	
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)	
	AII	108/108	100	(96.6-100)	
	1	36/36	100	(90.4-100)	
Bottle Positive	2	36/36	100	(90.4-100)	
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)	
	All	108/108	100	(96.6-100)	
Negative	1	108/108	100	(96.6-100)	
	2	108/108	100	(96.6-100)	
	3	107/107	100	(96.5-100)	
	AII	323/323	100	(98.8-100)	

Table 77: Percent Agreement for Lactobacillus

Concentration of	Concentration of		Agreement with Expected Results		
Lactobacillus casei	Site	Agreed / N	%	95% CI	
	1	36/36	100	(90.1-100)	
Bottle Positive + 8 Hours	2	36/36	100	(89.8-100)	
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)	
	All	108/108	100	(96.5-100)	
	1	36/36	100	(89.8-100)	
Bottle Positive	2	36/36	100	(90.4-100)	
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.1-100)	
	All	108/108	100	(96.5-100)	
	1	108/108	100	(90.4-100)	
Negative	2	108/108	100	(89.8-100)	
	3	107/107	100	(90.1-100)	
	All	323/323	100	(96.5-100)	

Table 78: Percent Agreement for Staphylococcus

Concentration of	Cito	Agreer	nent with Expec	ted Results
Staphylococcus	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.48-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	106/108	98.1	(93.5-99.5)
	3	107/107	100	(96.5-100)
	AII	321/323	99.4	(97.8-99.8)

Table 79: Percent Agreement for Staphylococcus aureus

Concentration of	Cita	Agreement with Expected Results		
Staphylococcus aureus	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
ivegative	3	107/107	100	(96.5-100)
	All	323/323	100	(98.8-100)

Table 80: Percent Agreement for Streptococcus

Concentration of	011	Agreement with Expected Results		ted Results
Streptococcus	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	AII	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	35/36	97.2	(85.8-99.5)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	AII	107/108	99.1	(94.9-99.8)
	1	108/108	100	(96.6-100)
Negative	2	107/108	99.1	(94.9-99.8)
	3	107/107	100	(96.5-100)
	All	322/323	99.7	(98.3-99.9)

Table 81: Percent Agreement for Streptococcus anginosus group

Concentration of	Oit-	Agreement with Expected Results		
Streptococcus anginosus	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	35/36	97.2	(85.8-99.5)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	107/108	99.1	(94.9-99.8)
Negative	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
	3	107/107	100	(96.5-100)
	All	323/323	100	(98.8-100)

Table 82: Percent Agreement for Pan Candida

Concentration of	Cita	Agreement with Expected Results		
Candida albicans	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁶ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
	3	107/107	100	(96.5-100)
	All	323/323	100	(98.8-100)

Table 83: Percent Agreement for Pan Gram-Negative

Concentration of	Cita	Agreement with Expected Results		
Klebsiella pneumoniae	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁹ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	107/108	99.1	(94.9-99.8)
	3	107/107	100	(96.5-100)
	All	322/323	99.7	(98.3-99.9)

Table 84: Percent Agreement for mecA

		_		
Concentration of	0:4-	Agreement with Expected Results		ted Results
Staphylococcus aureus	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x108 CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
	3	107/107	100	(96.5-100)
	AII	323/323	100	(98.8-100)

Table 85: Percent Agreement for vanA

Concentration of	Cita	Agreement with Expected Results		ted Results
Enterococcus faecium	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
, , ,	All	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	All	108/108	100	(96.6-100)
Nogotivo	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
Negative	3	107/107	100	(96.5-100)
	All	323/323	100	(98.8-100)

Table 86: Percent Agreement for vanB

		•		
Concentration of	Agree		nent with Expected Results	
Enterococcus faecalis	Site	Agreed / N	%	95% CI
	1	36/36	100	(90.4-100)
Bottle Positive + 8 Hours	2	36/36	100	(90.4-100)
(1x10 ⁸ CFU/mL)	3	36/36	100	(90.4-100)
	AII	108/108	100	(96.6-100)
	1	36/36	100	(90.4-100)
Bottle Positive	2	36/36	100	(90.4-100)
(1x10 ⁷ CFU/mL)	3	36/36	100	(90.4-100)
	AII	108/108	100	(96.6-100)
Negative	1	108/108	100	(96.6-100)
	2	108/108	100	(96.6-100)
	3	107/107	100	(96.5-100)
	AII	323/323	100	(98.8-100)

Interfering Substances and Sample Matrix Equivalency (Bottle Evaluation)

Two organism mixes consisting of 9 on-panel organisms representing 14 targets and negative blood matrix were used to assess potentially interfering substances and bottle types for interference. The concentration of each organism tested is summarized in **Table 87**.

Table 87: Interfering Substance and Bottle Equivalency Concentrations

Organism	Concentration
Cutibacterium acnes	3 x 108 CFU/mL
Enterococcus faecalis (vanB+)	4 x 10 ⁷ CFU/mL
Enterococcus faecium (vanA+)	4 x 10 ⁷ CFU/mL
Lactobacillus casei	4 x 10 ⁷ CFU/mL
Staphylococcus aureus	2 x 10 ⁷ CFU/mL
Staphylococcus epidermidis	2 x 10 ⁷ CFU/mL
Streptococcus pneumoniae	4 x 10 ⁷ CFU/mL
Klebsiella pneumoniae (Pan Gram-Negative target)	5 x 10 ⁸ CFU/mL
Candida albicans (Pan Candida target)	1 x 10 ⁶ CFU/mL

Interfering Substances

Eighteen substances were used to assess the **cobas eplex** BCID-GP panel for potential interference. The organisms in **Table 87** were spiked into negative blood matrix and tested in triplicate with and without each potentially interfering substance. Negative blood matrix was tested to control for potential positive interference. Potentially interfering substances are summarized in **Table 88**. None of the eighteen substances commonly found in blood culture specimens or as medications commonly used to treat skin or bloodstream infections were found to inhibit the **cobas eplex** BCID-GP panel at clinically relevant concentrations. The effect of interfering substances has only been evaluated for the organisms listed in **Table 87**. Interference due to substances other than those described in this section can lead to erroneous results.

Table 88: Potentially Interfering Substances: Substance List

Endogenous Substances	Testing Concentration			
Bilirubin	60 μg/mL			
Hemoglobin	0.6 g/L			
Human Genomic DNA	6 x 10 ⁵ copies/mL			
Triglycerides	1000 mg/dL			
γ-globulin	0.425 g/dL			

Exogenous Substances	Testing Concentration
Amoxicillin/Clavulanate	3.5 μg/mL
Amphotericin B	2 μg/mL
Caspofungin	5 μg/mL
Ceftriaxone	0.23 mg/mL
Ciprofloxacin	3 mg/L
Fluconazole	25 mg/L
Flucytosine	90 μg/mL
Gentamicin sulfate	3 μg/mL
Heparin	0.9 U/mL
Imipenem	83 μg/mL
Sodium Polyanethol Sulfonate	0.25% w/v
Tetracycline	5 mg/L
Vancomycin	30 mg/L

Sample Matrix Equivalency (Bottle Evaluation)

Thirteen bottle types were tested for interference with each of the organisms listed in **Table 87**. Five replicates of each organism were tested in each of two bottle lots. Negative blood matrix was run as a negative control. Eleven of the bottle types tested showed no interference for any of the targets tested. One lot of the BACTEC[™] Plus Anaerobic bottles showed false positive results for Pan Gram-Negative. The BacT/ALERT[®] FN Plus bottle type showed lower sensitivity for some targets (Pan Gram-Negative and *E. faecium* with *vanA*). A summary of the bottle types assessed and the study outcomes is found in **Table 89**.

Table 89: Sample Matrix Equivalency (Bottle Evaluation) Bottle Types

Manufacturer	Bottle Brand	Bottle Type	Study Outcome
BD	BACTEC™	Plus Aerobic	No interference observed
BD	BACTEC™	Plus Anaerobic	False positive results for Pan Gram-Negative target were observed in one lot.
BD	BACTEC™	Standard Aerobic	No interference observed
BD	BACTEC™	Standard Anaerobic	No interference observed
BD	BACTEC™	Peds Plus [™]	No interference observed
BD	BACTEC™	Lytic Anaerobic	No interference observed
bioMérieux	BACT/ALERT®	SA Standard Aerobic	No interference observed
bioMérieux	BACT/ALERT®	SN Standard Anaerobic	No interference observed
bioMérieux	BACT/ALERT®	FA Plus	No interference observed
bioMérieux	BACT/ALERT®	FN Plus	False negative results were observed for Pan Gram-Negative and <i>E. faecium/vanA</i> targets
bioMérieux	BACT/ALERT®	PF Plus	No interference observed
Thermo Scientific™	VersaTREK™	REDOX™ 1 EZ Draw Aerobic	No interference observed
Thermo Scientific™	VersaTREK™	REDOX™ 2 EZ Draw Anaerobic	No interference observed

Carryover and Cross-Contamination

Carryover and cross-contamination were evaluated for the **cobas eplex** BCID-GP panel within and between runs by alternating high positive and negative samples across multiple runs over 5 rounds of testing. A high-titer mix of *mecA* positive *Staphylococcus aureus*, *vanA* positive *Enterococcus faecium* and *Klebsiella pneumoniae* (a Pan Gram-Negative target organism) was prepared at 1 x 10° CFU/mL each as well as *Candida albicans* (a Pan *Candida* target organism) at 1x10° CFU/mL to simulate clinically relevant high positive samples for positive testing. Negative blood culture matrix was used to represent negative samples. Over 120 runs, all valid positive runs resulted in detection of *Staphylococcus aureus*, *mecA*, *Enterococcus faecium*, *vanA*, Pan Gram-Negative and Pan *Candida* and no false positives were detected in the negative runs.

Competitive Inhibition Study

Competitive inhibition was evaluated for the **cobas eplex** BCID-GP panel by pairing eight clinically relevant organisms (including a Pan Gram-Negative assay target, a Pan *Candida* assay target, and an off-panel gram-positive organism) in four simulated dual infection sample mixes. Each dual infection mix was tested in combination with each of the three other mixes, such that all organisms were tested at low titer (concentrations expected at bottle positivity) while in the presence of other organisms at higher titer (concentrations expected at 8 hours beyond bottle positivity, or one log higher than that expected at bottle positivity). No competitive inhibition was observed in any replicates of the twelve testing conditions. A summary of the organisms assessed and testing concentrations is found in **Table 90**.

Table 90: Competitive Inhibition Organisms and Concentrations Tested

Organism	High Concentration	Low Concentration
Enterococcus faecium	1 x 108 CFU/mL	4 x 10 ⁷ CFU/mL
Staphylococcus aureus	1 x 108 CFU/mL	2 x 10 ⁷ CFU/mL
Staphylococcus epidermidis	1 x 108 CFU/mL	2 x 10 ⁷ CFU/mL
Streptococcus agalactiae	4 x 108 CFU/mL	4 x 10 ⁷ CFU/mL
Streptococcus pneumoniae	4 x 108 CFU/mL	4 x 10 ⁷ CFU/mL
Candida albicans	1 x 10 ⁷ CFU/mL	1 x 10 ⁶ CFU/mL
Escherichia coli	1 x 10 ⁹ CFU/mL	2 x 108 CFU/mL
Cutibacterium granulosum ^A	1 x 10 ⁹ CFU/mL	3 x 108 CFU/mL

A. Off-panel organism

Technical Support

Please refer to the **cobas eplex** user assistance manual for further information regarding the **cobas eplex** system.

For technical support (assistance) please reach out to your local affiliate: https://www.roche.com/about/business/roche_worldwide.htm.

GLOSSARY OF SYMBOLS

Symbol	Description	Symbol	Description
LOT	Batch Code	C. LOT	Cartridge Lot
IVD	In vitro diagnostic medical device	EC REP	Authorized representative in the European Community
SN	Serial number	REF	Catalog number
C€	European Union Conformity	Ţ <u>i</u>	Consult instructions for use
	Manufacturer	\square	Use by date YYYY-MM-DD
Σ	Contains sufficient for <n> tests</n>	\triangle	Caution
	Oxidizers	(Irritant, dermal sensitizer, acute toxicity (harmful), narcotic effects, respiratory tract irritation
Rx Only	For prescription use only	UK	UK Conformity Assessed
8	Biological risks	1	Lower limit of temperature
1	Upper limit of temperature	. A .	Temperature range
UDI	Unique Device Identifier	GTIN	Global Trade Identification Number
(2)	Single Use		Importer
Roche PN	Roche Part Number		

REFERENCES

- Centers for Disease Control and Prevention, Blood Safety. Retrieved from https://www.cdc.gov/bloodsafety/bbp/diseases_organisms.html
- 2. Summary of Notifiable Diseases. Available from http://www.cdc.gov
- 3. CIFOR Analysis of State Legal Authorities. Available from http://www.cifor.us/
- Gurler, N., et al. (2012) Bacillus cereus Catheter Related Bloodstream Infection Lymphoblastic Leukemia. Mediterranean Journal of Hematology and Infectious Diseases, 4(1). DOI: 10.4084/MJHID.2012.004
- 5. Guinebretiere, Marie-Helene, et al. (2013) *Bacillus cytotoxicus* sp. nov. is a novel thermotolerant species of Bacillus cereus Group occasionally associated with food poisoning. International Journal of Systematic and Evolutionary Microbiology, 63 31-40. DOI: 10.1099/ijs.0.030627-0
- 6. Buttone, Edward J. (2010) Bacillus cereus, a Volatile Human Pathogen. Clinical Microbiology Reviews, 23(2) 382–398. DOI: 10.1128/CMR.00073-09
- Benusic, Michael A., et al. (2015) A cluster of Bacillus cereus bacteremia cases among injection drug users.
 Canadian Journal of Infectious Diseases and Medical Microbiology, 23(2) 103-104.
- Marino, Marco, et al. (2001) Modulation of Anaerobic Energy Metabolism of Bacillus subtilis by arfM (ywiD). Journal of Bacteriology, 183(23) 6815-6821. DOI: 10.1128/JB.183.23.6815-6821
- Fan, Ben, et al. (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex. Frontiers in Microbiology, 8(Jan 2017) Article 22. DOI: 10.3389/fmicb.2017.00022.
- 10. Lyons, Nicholas, Kolter, Roberto. (2017) Bacillus subtilis Protects Public Goods by Extending Kin Discrimination to Closely Related Species, 8(4) e00723-17. DOI: 10.1128/mBio.00723-17
- 11. Hall, Keri K., et al. (2006) Updated Review of Blood Culture Contamination. Clinical Microbiology Reviews, 19(4) 788–802. DOI: 10.1128/CMR.00062-05
- 12. Oggioni, Marco Rinaldo, et al. (1998) Recurrent Septicemia in an Immunocompromised Patient Due to Probiotic Strains of Bacillus subtilis. Journal of Clinical Microbiology, 36(1) 325-326.
- Wojewoda, Christina M., et al. (2012) Bloodstream Infection Caused by Nontoxigenic Corynebacterium diphtheriae in an Immunocompromised Host in the United States. Journal of Clinical Microbiology, 50(6) 2170– 2172. DOI: 10.1128/JCM.00237-12
- Soriano, Francisco, et al. (1995) Antimicrobial Susceptibilities of Corynebacterium Species and Other Non-Spore-Forming Gram-Positive Bacilli to 18 Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 39(1) 208–214. DOI: 10.1128/AAC.39.1.208
- 15. Smith, Christopher B., under supervision of Larson, Rachel and Pogliano, Kit. Propionibacterium acnes. University of California San Diego. July 1, 2011. Retrieved from https://microbewiki.kenyon.edu/index.php/Propionibacterium_acnes
- 16. Park, Hyun Jung, et al. (2011) Clinical Significance of *Propionibacterium acnes* Recovered from Blood Cultures: Analysis of 524 Episodes. Journal of Clinical Microbiology, 49(4) 1598–1601. DOI: 10.1128/JCM.01842-10
- 17. Achermann, Yvonne, et al. (2014) Propionibacterium acnes: from Commensal to Opportunistic Biofilm-Associated Implant Pathogen. Clinical Microbiology Reviews, 27(3) 419–440. DOI: 10.1128/CMR.00092-13
- 18. Hollenbeck, Brian L., et al. (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3(5) 421–433. DOI: 10.4161/viru.21282
- 19. Castillo-Rojas, Gonzalo, et al. (2013) Comparison of Enterococcus faecium and Enterococcus faecalis Strains Isolated from Water and Clinical Samples: Antimicrobial Susceptibility and Genetic Relationships. PLOS ONE, 8(4) e59491. DOI: 10.1371/journal.pone.0059491
- 20. Bar, Katharine, et al. (2006) Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infections due to enterococci. BMC Infectious Diseases, 6(145). DOI: 10.1186/1471-2334-6-145
- 21. Fernandes, Sanal C., et al. (2013) Drug resistance & virulence determinants in clinical isolates of Enterococcus species. Indian Journal of Medical Research, 137(5) 981–985.
- Fraser, Susan L., et al. Enterococcal Infections. Retrieved from http://emedicine.medscape.com/article/216993overview
- 23. Kristich CJ, et al. (2014) Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Boston, Massachusetts: Eye and Ear Infirmary.
- 24. Schlegel, L., et al. (1998) Lactobacillus species as opportunistic pathogens in immunocompromised patients. European Journal of Clinical Microbiology and Infectious Diseases, 17(12) 887-888.
- Orsi, Renato H., et al. (2016) Characteristics and distribution of Listeria spp.., including Listeria species newly described since 2009. Applied Microbiology and Biotechnology, 100(12) 5273-5287.
- 26. Elinav, Hila, et al. (2014) Pregnancy-Associated Listeriosis: Clinical Characteristics and Geospatial Analysis of a 10-Year Period in Israel. Clinical Infectious Diseases, 59(7) 953-961. DOI: 10.1093/cid/ciu504
- 27. Siegman-Igra, Yardena, et al. (2002) Listeria monocytogenes Infection in Israel and Review of Cases Worldwide. Emerging Infectious Diseases, 8(3) 305-310.

- 28. European Centre for Disease Prevention and Control. Listeriosis. Retrieved from http://ecdc.europa.eu/en/healthtopics/listeriosis/pages/index.aspx
- Public Health Agency of Canada. Micrococcus. Retrieved from http://www.phac-aspc.gc.ca/lab-bio/res/psdsftss/micrococcus-eng.php
- 30. Kocur, M., et. al. (2006). The Prokaryotes. The Genus Micrococcus, 2006(3) 961-971. DOI: 10.1007/0-387-30743-5_37
- Yang, Shuhua, et al. (2001) Micrococcus luteus Teichuronic Acids Activate Human and Murine Monocytic Cells in a CD14- and Toll-Like Receptor 4-Dependent Manner. Infection and Immunity, 69(4) 2025-2030. DOI: 10.1128/IAI.69.4.2025-2030.2001
- 32. NCBI Taxonomy Browser. Retrieved from https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Root
- 33. Tan, Thean Yen, et al. (2008) Microbiological Characteristics, Presumptive Identification, and Antibiotic Susceptibilities of *Staphylococcus lugdunensis*. Journal of Clinical Microbiology, 46(7) 2393-2395. DOI: 10.1128/JCM.00740-08
- 34. Lowry, Franklin D. (2003) Antimicrobial resistance: the example of Staphylococcus aureus. Journal of Clinical Investigation, 111(9) 1265–1273. DOI: 10.1172/JCI200318535.
- 35. Centers for Disease Control and Prevention. Healthcare-associated Infections. Staphylococcus aureus in Healthcare Settings. Retrieved from https://www.cdc.gov/HAI/organisms/staph.html
- Neeman, Kari, et al. (2014) Staphylococcus aureus Bloodstream Infection Treatment Guideline. Reviewed and Approved by Antimicrobial Stewardship Subcommittee of Pharmacy and Therapeutics Committee of the Nebraska Medical Center, July 2014.
- 37. Centers for Disease Control and Prevention. Methicillin-resistant Staphylococcus aureus (MRSA). Retrieved from https://www.cdc.gov/mrsa/lab/
- 38. Peter, JB. Coagulase-negative Staphylococcus (CoNS). GBMC Healthcare. Retrieved from http://www.specialtylabs.com/clients/gbmc/books/display.asp?id=320
- Favre, B., et al. (2005) Nosocomial bacteremia: clinical significance of a single blood culture positive for coagulase-negative staphylococci. Infection Control & Hospital Epidemiology, 26(8) 697-702. DOI: 10.1086/502605
- Tan, Thean Yen, et al. (2008) Microbiological Characteristics, Presumptive Identification and Antibiotic Susceptibilities of Staphylococcus lugdunensis. Journal of Clinical Microbiology. 46(7) 2393–2395. DOI: 10.1128/JCM.00740-08
- 41. Chu, Vivian H., Staphylococcus lugdunensis. UpToDate. Retrieved from http://www.uptodate.com/contents/staphylococcus-lugdunensis
- 42. van der Mee-Marquet, N., et al. (2003) Staphylococcus lugdunensis Infections: High Frequency of Inguinal Area Carriage. Journal of Clinical Microbiology, 41(4) 1404–1409. DOI: 10.1128/JCM.41.4.1404-1409
- 43. Gatermann, SG, et al. (2007) Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clinical Microbiology and Infection, 13(8) 777. DOI: 10.1111/j.1469-0691.2007.01749.x
- 44. Hardie, J.M., et al. (1997) Classification and overview of the genera Streptococcus and Enterococcus. Journal of Applied Microbiology Symposium Supplement, 83(S1) 1S–11S.
- 45. Landwehr-Kenzel, Sybille, et al. (2014) Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease. Frontiers in Immunology. 5(519). DOI: 10.3389/fimmu.2014.00519
- 46. Stratton, Charles W. Infections due to the Streptococcus anginosus (Streptococcus milleri) group. UpToDate. Retrieved from http://www.uptodate.com/contents/infections-due-to-the-streptococcus-anginosus-streptococcus-milleri-group
- 47. Junckerstorff, Ralph K., et al. (2014) Invasive Streptococcus anginosus group infection—does the species predict the outcome? International Journal of Infectious Diseases, 18(Jan 2014) 38–40.
- 48. Giuliano, Simone, et al. (2012) Streptococcus anginosus group disseminated infection: case report and literature review. Le Infezioni in Medicina, 20(4) 145-154.
- 49. Ask The Experts: Disease & Vaccines. Pneumococcal Vaccines (PCV13 and PPSV23). Retrieved from http://www.immunize.org/askexperts/experts_pneumococcal_vaccines.asp
- 50. Cohen- Poradosu, Ronit. (2007) Group A Streptococcus Epidemiology and Vaccine Implications. Clinical Infectious Diseases, 45(7) 863-865. DOI: 10.1086/521263
- 51. Srinivasan, Velusamy. Introduction to emm typing: M protein gene (emm) typing Streptococcus pyogenes. Centers for Disease Control and Prevention. Retrieved from https://www.cdc.gov/streplab/m-proteingene-typing.html
- 52. Centers for Disease Control and Prevention. Laboratory Testing for MRSA. Retrieved from https://www.cdc.gov/mrsa/lab/
- 53. Ballhausen, Britta, et al. (2014) The mecA Homolog mecC Confers Resistance against -Lactams in Staphylococcus aureus Irrespective of the Genetic Strain Background. Antimicrobial Agents and Chemotherapy 58(7) 3791–3798. DOI: 10.1128/AAC.02731-13
- Samuel, Linoj P., et al. (2016) Multicenter Assessment of Gram Stain Error Rates. Journal of Clinical Microbiology, 54(6) 1442-1447.

DOCUMENT REVISION

Document Revision Information		
Doc Rev. 2.0 07/2025	Updated GenMark phone number.	
01/2023	Replaced instances of "kit" with "box".	
	Removed GenMark and Roche mentions in "Item Number".	
	Removed "(optional)" in consumbles section.	
	Updated GCS information.	
	Removed the "Troubleshooting" section.	
	Added language to Detailed Procedure section to provide clarity and fill gaps.	
	Removed "All rights reserved." from the copyright statement.	
	Please contact your local Roche Representative if you have any questions.	

The summary of safety and performance report can be found using the following link: https://ec.europa.eu/tools/eudamed

TRADEMARKS

GenMark®, GenMark Dx®, eSensor®, **cobas**® **eplex**, Designed For the Patient, Optimized For the Lab® and The True Sample-to-Answer Solution® are registered trademarks of Roche.

Kimwipes[™] is a trademark of Kimberly-Clark Worldwide.

BacT/Alert® is a registered trademark of bioMérieux.

BACTEC™ is a trademark of BD.

VersaTREK™ and REDOX™ are trademarks of Thermo Fisher Scientific.

PATENT INFORMATION

cobas eplex blood culture Identification Gram-Positive panel and/or use thereof features technology claimed in one or more of the following United States and European patents owned or licensed by GenMark Diagnostics Inc. or its subsidiaries, with multiple additional foreign and domestic patents pending: United States Patent Nos. 7,820,391, 8,486,247, 8,501,921, 9,222,623, 9,410,663, 9,453,613, 9,498,778, 9,500,663, 9,598,722; 9, 873,120, 9,874,542, 9,957,553, 10,001,476, 10,106,847, 10,273,535, 10,352,983, 10,357,774, 10,391,489, 10,495,656, 10,564,211, 10,670,591, 10,669,592, 10,753,986, 10,807,090, 11,021,759, 11,156,605, 11,391,790, 11,498,074, 11,635,475, D881409, D900330, European Patent Nos.2220102, 2912432, 2965817, 3052235, 3218725, 3218108, 3427830, 3588095, 3673086, and 3830585, and other international counterparts.

Unless otherwise agreed to in writing, by using a cartridge, Recipient acknowledges that Recipient has read, accepts and agrees to be bound by and comply with the General Terms and Conditions of Sale available on Roche's website which can be amended from time to time by Roche without consent. If Recipient does not accept and agree to be bound by the General Terms and Conditions of Sale, Recipient will immediately cease any further use of the cartridge.

This product is subject to a limited license to use the product in the field of human in vitro diagnostics and research reasonably related thereto. Users are prohibited from using this product for other applications, including in the field of forensics (including human identification testing).

Effective Date: May 2025 ©2025 Roche Molecular Systems, Inc.

GenMark Diagnostics, Inc. A Member of the Roche Group 5964 La Place Court, Carlsbad, CA 92008 +1 800 428 5076 https://diagnostics.roche.com/