LightCycler RNA Amplification Kit Hybridization Probes

Kit for one-step RT-PCR using the LightCycler¹⁾ Instrument

Cat. No. 2 015 145

Kit for 96 reactions

Store the kit at -20°C!

Instruction Manual

Version 4, January 2003

1. Preface

1.1 Table of contents

1.	Preface	2
1.1	Preface	2
1.2	Kit contents	3
2.	Introduction	4
2.1	Product overview	4
3.	Procedures and required materials	6
3.1	Before you begin Procedure	6
3.2	Procedure	
3.3	Experimental Protocol	9
3.4	Preparation of the master mix Typical results	
3.5	Typical results	
3.6	Related Procedures	
3.6.1	Melting curve analysis	
	for genotyping single nucleotide polymorphisms (SNPs) and analyzing mutations	
3.6.2	Carry-over prevention using UNG	
4.	Appendix	
4.1	Trouble shooting	18
4.2	Related products	

1.2 Kit contents

Kit contents

Vial	Label	Content and use
1 red cap	LightCycler RT-PCR Enzyme Mix	 2 × 20 μl enzyme mix for RT-PCR
2 red cap	LightCycler RT-PCR Reaction Mix Hybridization Probes, 5× conc.	 3 × 128 μl [5×] reaction mix for RT-PCR contains reaction buffer, dNTP mix (with dUTP instead of dTTP), and 15 mM MgCl₂
3 blue cap	MgCl ₂ stock solution, 25 mM	 1 ml to adjust MgCl₂ concentration
4 color- less cap	H ₂ O, sterile, PCR grade	 2 × 1 ml to adjust the final reaction volume

Additional equipment and reagents required

Refer to the following table for a list of additional reagents and equipment required for a RT-PCR using the LightCycler Instrument:

Equipment and reagents	Cat. No.
LightCycler InstrumentLightCycler Capillaries	2 011 468 1 909 339
 LightCycler Control Kit RNA (optional) LightCycler Color Compensation Set (optional*) 	2 158 841 2 158 850
 PCR template Primers Hybridization Probes 	

* If you want to perform color compensation when using LightCycler Red 640 and LightCycler Red 705 labeled Hybridization Probes in multiplex dual color experiments (i.e. in one capillary).

Note: For two-step RT-PCR protocol using the LightCycler Instrument refer to:

- · LightCycler DNA Master SYBR Green I (Cat. No. 2 015 099, 2 158 817), or
- · LightCycler DNA Master Hybridization Probes (Cat. No. 2 015 102, 2 158 825), or
- · LightCycler FastStart DNA Master SYBR Green I (Cat. No. 3 003 230, 2 239 264), or
- LightCycler FastStart DNA Master Hybridization Probes (Cat. No. 3 003 248, 2 239 272).

2. Introduction

2.1 Product overview

Kit description The LightCycler RNA Amplification Kit Hybridization Probes is a specifically adapted product for one-step RT-PCR in glass capillaries using the LightCycler Instrument and Hybridization Probes as detection format.

Hybridization Probes consist of two, different oligonucleotides that hybridize to an internal sequence of the amplified fragment during the annealing phase of PCR cycles. One probe is labeled at the 5'-end with a LightCycler Red fluorophore (LC – Red 640 or LC –Red 705), and to avoid extension, modified at the 3'-end by phosphorylation. The other probe is labeled at the 3'-end with fluorescein. Only after hybridization are the two probes in close proximity, resulting in fluorescence resonance energy transfer (FRET) between the two fluorophores. During FRET, fluorescein, the donor fluorophore, is excited by the light source of the LightCycler Instrument, and part of the excitation energy is transferred to LightCycler Red, the acceptor fluorophore. The emitted fluorescence of the LightCycler Red fluorophore is measured.

LightCycler Red 640 and LightCycler Red 705 labeled Hybridization Probes can be used separately or in combination therefore allowing single or dual color detection. When performing single color detection, color compensation is not necessary. However, the use of a color compensation file is a prerequisite to perform dual color experiments with both LightCycler Red 640 and LightCycler Red 705 labeled Hybridization Probes in a single capillary. The color compensation can be performed during or after a run on the Light-Cycler Instrument.

Refer to the LightCycler Operator's Manual and to the pack insert of the LightCycler Color Compensation Set for further information on color compensation and the generation and use of a color compensation file.

The LightCycler RNA Amplification Kit Hybridization Probes provides convenience, high performance, reproducibility, and minimizes contamination risk. Only template RNA, primers, Hybridization Probes, and additional MgCl₂ (if necessary), have to be added. **<u>Moter</u>** The described performance of the kit can be guaranteed for use on the LightCycler Instrument only.

Basic stages of the In principle, the LightCycler RNA Amplification Kit Hybridization Probes can be used for standard protocol the amplification and detection of every RNA target. Each protocol needs to be adapted to the reaction conditions of the LightCycler Instrument and parameter specific Hybridization Probes need to be designed. Refer to the LightCycler Operator's Manual for general recommendations.

> As an example for a standard protocol, the LightCycler RNA Amplification Kit Hybridization Probes is used in combination with the LightCycler Control Kit RNA. The latter kit provides a control RNA template and primers and differently labeled Hybridization Probe mixes (LC – Red 640 or LC – Red 705 labeled) for amplifying an *in vitro* transcribed cytokine RNA.

Amplify and monitor on-line by using a combined procedure on the LightCycler Instrument (stage 2 below). Interpret the results directly after completing the RT-PCR.

Stage	Description
1	Set-up the RT-PCR
2	RT-PCR using the LightCycler Instrument optional: additional melting curve analysis
3	Interpretation of results

2.1 Product overview, continued

Application	The LightCycler RNA Amplification Kit Hybridization Probes is suitable for amplification and detection of RNA using the LightCycler Instrument. Furthermore it can be used to genotype single nucleotide polymorphisms (SNPs) and analyze mutations. <i>Note:</i> The amplicon size should not exceed 1 kb in length. For optimal results, select a product length \leq 700 bp.		
Assay time/ hands on time	Procedure (in combination with the LightCycler Control Kit RNA)	Time	
	Set-up the RT-PCR	15 min	
	LightCycler RT-PCR run	40 min	
	Total assay time	55 min	
Number of tests	The kit is designed for 96 reactions with a final reaction volume of 20 μl each	1.	
Quality control	rol The LightCycler RNA Amplification Kit Hybridization Probes is function tested using the LightCycler Control Kit RNA, according to the protocols described below.		
Kit storage and stability	6 1 1		
	The kit is shipped on dry ice.		

3. Procedures and required materials

3.1 Before you begin

Introduction

As an example for a RT-PCR using the LightCycler Instrument, the LightCycler RNA Amplification Kit Hybridization Probes is combined with the LightCycler Control Kit RNA as described below:

A 322 bp fragment of *in vitro* transcribed cytokine RNA is amplified with specific primers. Amplification of target DNA is monitored using Hybridization Probes (labeled either with LC – Red 640 or LC – Red 705) that hybridize to an internal sequence of the amplified fragment.

<u>**Note</u>**: The protocol is designed for a final reaction volume of 20 μ l. For volumes <20 μ l, the reaction and cycle conditions have to be optimized.</u>

Storage of kit solutions Store the kit components as follows:

Vial	Label	Storage
1 red cap	LightCycler RT-PCR Enzyme Mix	 Store at -20°C. Avoid repeated freezing and thawing!
2 red cap	LightCycler RT-PCR Reaction Mix Hybridization Probes, 10× conc.	 Store at -20°C. Avoid repeated freezing and thawing!
3 blue cap	MgCl ₂ stock solution, 25 mM	Store at −20°C.
4 color- less cap	H ₂ O, sterile, PCR-grade	Store at -20°C.

Additional reagents and equipment required

- LightCycler Instrument
- LightCycler Capillaries
- LightCycler Control Kit RNA
- Standard benchtop microcentrifuge containing a rotor for 2.0 ml reaction tubes.
- Optional*: LightCycler Color Compensation Set

* If you want to perform color compensation when using LightCycler Red 640 and LightCycler Red 705 labeled Hybridization Probes in multiplex dual color experiments (i.e. in one capillary).

Note: Centrifuge adapters that can be used in a standard microcentrifuge rotor are supplied with the LightCycler Instrument.

3. Procedures and required materials, continued

Sample material	 Every sample material suitable for RT-PCR in terms of purity, concentration, and absence of inhibitors can be used. For reproducible nucleic acid preparations and RT-PCR set-up, use the MagNA Pure LC nucleic acid purification instrument (Cat. No. 2 236 931). <u>Note:</u> Up to 500 ng total RNA or 100 ng mRNA can be used. Higher concentrations might result in inhibition of the reaction. Refer to the LightCycler Operator's Manual for recommendations concerning sample material and nucleic acid purification. 					
	For the standard protocol, <i>in vitro</i> transcribed cytokine RNA as Control Kit RNA is used as starting sample material.	provi	ded in	the L	.ightC	Sycler
Primers	Use primers at a final concentration of 0.3–1 μ M each. A recommended starting concentration is 0.5 μ M each. Refer to the LightCycler Operator's Manual for recommendations concerning primer design.					
Hybridization Probes	Use the Hybridization Probes at a final concentration of 0.2 μ M each. In some cases it might be advantageous to double the LightCycler Red- probe concentration to 0.4 μ M. Refer to the LightCycler Operator's Manual for recommendations concerning Hybridization Probe design, detailed information about the dyes (Fluorescein, LightCycler Red 640 and LightCycler Red 705), and how to label the Hybridization Probes with the respective dyes.					
MgCl ₂	For specific and efficient amplification using the LightCycler Instrument, it is essential to optimize the target-specific $MgCl_2$ concentration. The LightCycler RNA Amplification Kit Hybridization Probes contains a basic $MgCl_2$ concentration of 3 mM (final concentration). The optimal concentration for RT-PCR with the LightCycler Instrument may vary from 3 to 7 mM. The table below gives the volumes of the $MgCl_2$ stock solution (vial 3, blue cap) which give the designated $MgCl_2$ concentration, when added to a 20 μ l final RT-PCR volume.					
	To reach a final Mg ²⁺ concentration (mM) of:	3	4	5	6	7
	Add this amount of 25 mM MgCl ₂ stock solution (μ I)	0	0.8	1.6	2.4	3.2
Negative control	Always run a negative control with the samples. To prepare a negative control, replace the template RNA with PCR-grade water (vial 4, colorless cap).					
DNA contamination control	The RNA preparation can be tested for DNA contamination when the template RNA is used in combination with the LightCycler DNA Master Hybridization Probes (Cat. No. 2 015 102, 2 158 825) or LightCycler FastStart DNA Master Hybridization Probes (Cat. No. 3 003 248, 2 239 272).					
Capillary handling	Do not touch the surface of the capillaries. Always wear glove capillaries.	s whe	en har	ndling	the	

3.2 Procedure

General remarks The following procedure is adapted to use with the LightCycler Control Kit RNA, and serves as an example for the application of the LightCycler RNA Amplification Kit Hybridization Probes.

Thawing the solutions

Thaw the following reagents, mix gently, and store on ice:

From the	Thaw the
LightCycler RNA Amplification Kit Hybridization Probes	 LightCycler RT-PCR Enzyme Mix (vial 1, red cap) LightCycler RT-PCR Reaction Mix Hybridization Probes (vial 2, red cap) MgCl₂ stock solution (vial 3, blue cap)
LightCycler Control Kit RNA	 Cytokine RNA (vial 1-4, purple cap) Cytokine Hybridization Probe Mix, LC-Red 640 labeled (vial 6, yellow cap), and/or: Cytokine Hybridization Probe Mix, LC-Red 705 labeled (vial 7, yellow cap), Cytokine Primer Mix (vial 5, white cap) H₂O sterile, PCR-grade (vial 8, colorless)

Note: A reversible precipitate may form in the LightCycler RT-PCR Reaction Mix Hybridization Probes (vial 2, red cap) during storage, which does not influence the perfomance in RT-PCR.

If a precipitate is visible proceed as described below:

Step	Action
1	Place the RT-PCR Reaction Mix at room temperature.
2	Mix gently from time to time until the precipitate is completely dissolved.
3	Place on ice.

Note: Define the experimental protocol before preparing the master mix.

3.3 Experimental Protocol

General remarks

The following experimental protocol is adapted to use with the LightCycler Control Kit RNA, and serves as an example for the application of the LightCycler RNA Amplification Kit Hybridization Probes.

The following table gives a guideline for optimization of the cycle parameters:

	Parameter		Value		
	Denaturation temperature (°C)		95		
	Denaturation time (s)		0		
	Annealing temperature (°C)	Primer and Hyl	oridization Pro	bes dependent	
	Annealing time (s)	15			
	Elongation temperature (°C)		72		
	Elongation time (s)	length of product [bp]/25			
Experimental Protocol	 Note: The recommended temperature to perform the reverse transcription reaction is 55°C. The described protocol consists of four programs: Program 1: Reverse transcribtion of template RNA Program 2: Denaturation of the cDNA/RNA hybrid Program 3: Amplification of cDNA Program 4: Cooling the rotor and thermal chamber 				
	and the subsequent setting of the fluorescence parameters, followed by defining the adjustments for the reverse transcription reaction.				
Program 1 Set the values for reverse transcription of the cytokine RNA template as Reverse Cycle Program Data Value				as follows:	
	Cycles		1]	
			NI	1	

Cycle Program Data	Value
Cycles	1
Analysis Mode	None
Temperature Targets	Segment 1
Target Temperature (°C)	55
Incubation time (h:min:s)	10:00*
Temperature Transition Rate (°C/s)	20.0
Secondary Target Temperature (°C)	0
Step Size (°C)	0.0
Step Delay (Cycles)	0
Acquisition Mode	None

* When amplifying GC-rich templates or templates with a high degree of secondary structures, it is recommended to extend the incubation time to 30 min.

continued on next page

Experimental protocol, continued 3.3

Program 2 Denaturation Set the values for denaturation of the cDNA/ RNA hybrid as follows:

Cycle Program Data	Value
Cycles	1
Analysis Mode	None
Temperature Targets	Segment 1
Target Temperature (°C)	95
Incubation time (h:min:s)	30
Temperature Transition Rate (°C/s)	20.0
Secondary Target Temperature (°C)	0
Step Size (°C)	0.0
Step Delay (Cycles)	0
Acquisition Mode	None

Program 3 Amplification

Set the values for amplifying the target DNA as follows:

Cycle Program Data		Value		
Cycles		45		
Analysis Mode		Quantification		
Temperature Targets	Segment1	Segment 2	Segment 3	
Target Temperature (°C)	95	50	72	
Incubation time (h:min:s)	0**	15	13	
TemperatureTransition Rate (°C/s)	20.0	20.0	2.0	
Secondary Target Temperature (°C)	0	0	0	
Step Size (°C)	0.0	0.0	0.0	
Step Delay (Cycles)	0	0	0	
Acquisition Mode	None	Single	None	

** When amplifying GC-rich templates or templates with a high degree of secondary structures, it is recommended to extend the incubation time to 5 s.

Program 4 Cooling

Set the values for cooling the rotor and thermal chamber at the end of the protocol as follows:

Cycle Program Data	Value
Cycles	1
Analysis Mode	None
Temperature Targets	Segment 1
Target Temperature (°C)	40
Incubation time (h:min:s)	30
Temperature Transition Rate (°C/s)	20.0
Secondary Target Temperature (°C)	0
Step Size (°C)	0.0
Step Delay (Cycles)	0
Acquisition Mode	None

3.3 Experimental Protocol, continued

p							
Setting the fluorescence parameters	 Set the fluorescence parameters as follows: Display Mode: for single color detection during the run: Fluorescence channel 2 (F2) when using LightCycler Red 640 as acceptor fluorophore, or fluorescence channel 3 (F3) when using LightCycler Red 705 as acceptor fluorophore. for single color detection after the run: Fluorescence channel 2/ fluorescence channel 1 (F2/F1) when using LightCycler Red 640 as acceptor fluorophore, or fluorescence channel 1 (F2/F1) when using LightCycler Red 640 as acceptor fluorophore, or fluorescence channel 3/fluorescence channel 1 (F3/F1) when using LightCycler Red 705 as acceptor fluorophore. for dual color detection during and after the run: When using both, LightCycler Red 640 and LightCycler Red 705 labeled Hybridization Probes, choose either fluorescence channel 2 (F2) or fluorescence channel 3 (F3). 						
	Set the flu	orescenc	e gains as follows:				
	Ī		Fluorimeter Gain	Value			
		Channel	1 (F 1)	1			
	•	Channel	2 (F 2)	15			
		Channel	3 (F 3)	30			
	<u>Note</u> : With	n LightCy	cler Software V.3.5 and higher, no gain s	etting is required.			
Define the adjust-	Refer to th	ne followi	ng table to define the adjustments for t	- Refer to the following table to define the adjustments for the RT reaction:			
ments for the RT]	Step	Action				
		Step					
ments for the RT			Action				
ments for the RT		1	Action Click on Edit Samples button.				
ments for the RT		1	Action Click on Edit Samples button. Enter sample information.				
ments for the RT	Refer to th one-step F	1 2 3 4 ie LightCy	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C.		ing the		
ments for the RT	one-step F When perf and Light(1 2 3 4 RT-PCR. forming a Cycler Re or compe	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C. Click on Done button. ycler Operator's Manual for further recor a dual color detection experiment using d 705 labeled Hybridization Probes in a ansation file can be activated or deactiva	nmendations concern both LightCycler Red single capillary, a pre	l 640 eviously		
ments for the RT reaction Color compensation	one-step F When perf and Light(stored colo	1 2 3 4 RT-PCR. forming a Cycler Re or compe	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C. Click on Done button. ycler Operator's Manual for further recor a dual color detection experiment using d 705 labeled Hybridization Probes in a ansation file can be activated or deactiva	nmendations concern both LightCycler Red single capillary, a pre	l 640 eviously		
ments for the RT reaction Color compensation	When pert and Light(stored colu LightCycle Step 1	1 2 3 4 e LightC RT-PCR. forming a Cycler Re or compe rrInstrum Select t	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C. Click on Done button. ycler Operator's Manual for further recor a dual color detection experiment using d 705 labeled Hybridization Probes in a ensation file can be activated or deactivated ent. Action he data file in the Programming Screen	nmendations concern both LightCycler Red single capillary, a pre ated during the run of n.	l 640 eviously		
ments for the RT reaction Color compensation	when pert and Light(stored coll LightCycle Step 1 2	1 2 3 4 e LightC RT-PCR. forming a Cycler Re or compe rrInstrum Select t Click or	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C. Click on Done button. ycler Operator's Manual for further recor a dual color detection experiment using d 705 labeled Hybridization Probes in a ensation file can be activated or deactivated ent. Action the data file in the Programming Screen a Choose CCC File and select the approx	nmendations concern both LightCycler Red single capillary, a pre ated during the run of n. ppriate file.	l 640 eviously f the		
ments for the RT reaction Color compensation	When pert and Light(stored colu LightCycle Step 1	1 2 3 4 e LightCy RT-PCR. forming a Cycler Re or compe erInstrum Select t Click or Click or tion dur	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C. Click on Done button. ycler Operator's Manual for further recor a dual color detection experiment using d 705 labeled Hybridization Probes in a ensation file can be activated or deactivated. Action the data file in the Programming Screen Choose CCC File and select the appro the Use Color Compensation button ing on-line display of data.	nmendations concern both LightCycler Red single capillary, a pre ated during the run of n. opriate file. to enable color compe	I 640 eviously f the ensa-		
ments for the RT reaction Color compensation	when pert and Light(stored coll LightCycle Step 1 2	1 2 3 4 e LightCy RT-PCR. forming a Cycler Re or compe erInstrum Select t Click or Click or tion dur	Action Click on Edit Samples button. Enter sample information. Set temperature to 55°C. Click on Done button. ycler Operator's Manual for further recor a dual color detection experiment using d 705 labeled Hybridization Probes in a ensation file can be activated or deactivated or the data file in the Programming Screen Choose CCC File and select the appro- the Use Color Compensation button	nmendations concern both LightCycler Red single capillary, a pre ated during the run of n. opriate file. to enable color compe	I 640 eviously f the ensa-		

on the LightCycler Instrument (see section 3.5).

3.4 Preparation of the master mix

Procedure

Depending on the total number of reactions place LightCycler Capillaries in precooled centrifuge adapters.

Prepare a master mix by multiplying the amount in the "Volume" column by the number of reactions to be cycled, plus one additional reaction.

Proceed as described below for a 20 μl standard reaction, when performing single or dual color detection.

Step	Action					
1	In a 1.5 ml reaction tube on ice, add the follov mentioned below:	ving com	ponent	s in the	order	
	Component		Final conc.			
		Α	В	C		
	H ₂ O, sterile, PCR grade (vial 8, colorless cap)	8.2 µl	8.2 μl	6.2 μl		
	MgCl ₂ stock solution (vial 3, blue cap)	2.4 μl	2.4 μl	2.4 μl	6 mM	
	LightCycler RT-PCR Reaction Mix Hybridization Probe (vial 2, red cap)	4 μl	4 μl	4 μl	1×	
	Cytokine Hybridization Probe Mix, LC-Red 640 labeled (vial 6, yellow cap)	2 µl	-	2 µl	0.2 μM	
	Cytokine Hybridization Probe Mix, LC-Red 705 labeled (vial 7, yellow cap)	-	2 µl	2 µl	each	
	Cytokine Primer Mix (vial 5, white cap) 2 µl 2 µl 2				0.5 μM each	
	LightCycler RT-PCR Enzyme Mix, (vial 1, red cap)	0.4 µl	0.4 μl	0.4 µl	1×	
	Total volume 19 μl 19 μl					
2	A: Single color detection using LC- Red 640 B: Single color detection using LC- Red 705 C: Dual color detection using LC- Red 640 and LC-Red 705 • Mix gently.					
	 Pipet 19 μl master mix into the precooled LightCycler Capillary. Add 1 μl of the Cytokine RNA template (vial 1-4). 					
3	 Seal each capillary with a stopper and place the adapters, containing the capillary, into a standard benchtop microcentrifuge. Centrifuge at 700 × g for 5 s (3000 rpm in a standard benchtop microcentrifuge). <u>Note:</u> Place the centrifuge adapters in a balanced arrangement within the centrifuge. 					
4	Place the capillaries in the rotor of the LightC	ycler Intr	ument.			
5	Cycle the samples as described in section 3.3	•				

3.5 Typical results

Introduction	Data analysis includes only one step since the sequence-specific Hybridization Probes
	require no additional melting curve analysis.

Color Th Compensation ysi

The use of a previously generated color compensation file is a prerequisite for the analysis of a dual color experiment with both LightCycler Red 640 and LightCycler Red 705 labeled Hybridization Probes in a single capillary. Optionally, color compensation can be done when the detection is performed with a single color (LC-Red 640 or LC-Red 705).

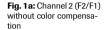
Refer to the LightCycler Operator's Manual and to the pack insert of the LightCycler Color Compensation Set for further information on the generation and use of a color compensation file.

Proceed as described below to use the stored color compensation file for data analysis after a run on the LightCycler Instrument:

Step	Action
1	Select the data file in the LightCycler Data Analysis module of the LightCycler Software.
2	Click on the Select a Program button and select the program to be analyzed.
3	Under the Color Compensation menu, select Load Calibration Data and highlight the stored 'CCC' color compensation file. <u>Alternative:</u> Click on the Select CCC Data button and choose Import CCC File .
4	To display the color compensated data: Click on the Color Compensation button. <u>Alternative:</u> Select Enable under the Color Compensation pull-down menu.
5	To return to the raw data: Click on the Color Compensation button again. <u>Alternative:</u> Select Disable under the Color Compensation pull down menu.

Refer to the following table to get an overview how color compensation effects the obtained fluorescence signals:

	Signals visible in			
	Channe	el 2 (F2)	Channe	l 3 (F3)
	Without	With	Without	With
		color com	pensation	
Single color detection				
LightCycler Red 640	+	+	+	-
	(Fig. 1a)	(Fig. 1b)	(Fig. 1c)	(Fig. 1d)
LightCycler Red 705	(+)	-	+	+
Dual color detection				
LightCycler Red 640 and	+	+	+	+
	(uncompen-	(compen-	(uncompen-	(compen-
LightQueler Red 705	sated)	sated)	sated)	sated)
LightCycler - Red 705				

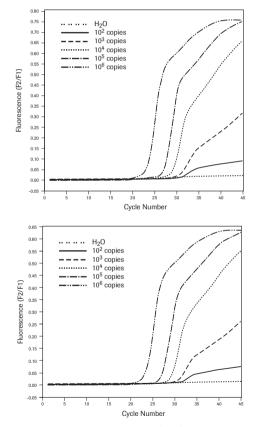

(+) : weak signal

: no signal

Refer to the LightCyler Operators Manual for further information.

3.5 Typical results, continued

Quantification
programThe following amplification curves were obtained by performing the procedure for single color detection and using LightCycler Red 640 as acceptor fluorophore. Displayed
are the results in channel 2 and 3, with and without color compensation.
Equivalent results (according to the table above) will be obtained using single color
detection with LightCycler Red 705 as acceptor fluorophore or dual color detection with
LC-Red 640 and LC Red-705 simultaneously.
The fluorescence values versus cycle number are displayed. 100 copies of the Cytokine
RNA can be reproducibly detected by amplification in the LightCycler Instrument and
using Hybridization Probes as detection format.



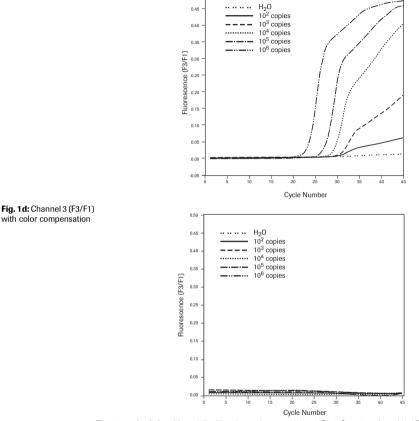
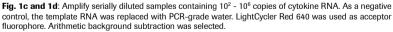

Fig. 1b: Channel 2 (F2/F1) with color compensation

Fig. 1a and 1b: Amplify serially diluted samples containing 10² - 10⁶ copies of cytokine RNA. As a negative control, the template RNA was replaced with PCR-grade water. LightCycler Red 640 was used as acceptor fluorophore.


continued on next page Roche Applied Science

3.5 Typical results, continued

Fig. 1c: Channel 3 (F3/F1) without color compensation

0.50

Roche Applied Science

3.6 Related Procedures

3.6.1 Melting curve analysis for genotyping single nucleotide polymorphisms (SNPs) and analyzing mutations

General remarks The melting curve analysis is an additional cycle that has to be performed after the amplification cycles are completed and the amplicon is formed. It has to be added to the Experimental protocol following Program 3: Amplification (see section 3.3). The following table gives a guideline for genotyping SNPs and analyzing mutations using the melting curve program.

Set the values for the melting curve analysis as follows:

Cycle Program Data	Value		
Cycles	1		
Analysis Mode		Melting Curve	
Temperature Targets	Segment 1 Segment 2 Segment		
Target Temperature (°C)	95	annealing temperature -5	95
Incubation time (h:min:s)	0	30-60	0
Temp. Transition Rate (°C/s)	20.0	20.0	0.1
Secondary Target Temperature (°C)	0	0	0
Step Size (°C)	0.0	0.0	0.0
Step Delay (Cycles)	0	0	0
Acquisition Mode	None	None	Cont.

Refer to the LightCycler Operator's Manual for further recommendations concerning genotyping SNPs and analyzing mutations.

3.6.2 Carry-over prevention using UNG

Introduction		eat-labile Uracil-DNA Glycosylase (UNG) is suitable for preventing carry-over mination between PCBs. This technique relies on the incorporation of denyuri-			
	contamination between PCRs. This technique relies on the incorporation of deoxyuri- dine triphosphate (dUTP) during all amplification reactions and the pretreatment of all successive PCR mixtures with the heat-labile UNG. The UNG cleaves DNA at any site where a deoxyuridylate residue has been incorporated. Subsequently, the resulting abasic sites are hydrolized due to the high temperatures during the initial denaturation step, and can not serve as PCR templates any longer. The heat-labile UNG is inacti- vated at the same time.				
	UNG i	s inactive on RNA and native DNA.			
		Decontamination can be achieved with all the provided LightCycler reagents, since s replaced with dUTP.			
	Refer t	to the LightCycler Operator's Manual for further informations.			
Additional reagen required		-DNA Glycosylase, heat-labile No. 1 775 367)			
Procedure		o the thermocycling procedure, add heat-labile Uracil-DNA Glycosylase (UNG) to aster mix.			
	Step	Action			
	1	Add 1 μ l heat-labile UNG to the master mix per 20 μ l final reaction volume.			
	2 Add template RNA and incubate the completed reaction mixture for 5 min at room temperature.				
		room temperature.			
	3	Destroy any contaminating template and inactivate the UNG enzyme by performing the RT at 55°C. <u>Note</u> : Do not perform an additional inactivation step at higher temperatures (>55°C) since the RT enzyme will be inactivated.			

4. Appendix

4.1 Trouble shooting

Problem	Possible cause	Recommendation
Precipitate in RT- PCR reaction buffer.	Concentrated compounds in the RT-PCR reaction buffer in combi- nation with storage conditions.	Place the RT-PCR reaction mix at room temperature. Mix gently from time to time until the precipitate is completely dissolved and place on ice.
Amplification reaches plateau phase before the program is finalized.	Very high starting amount of nucleic acid.	The program can be finished by clicking on the End Program button. The next cycle program will start automatically.
	The number of cycles is too high.	Reduce the number of cycles in the cycle program.
Log-linear phase of amplification just starts when the amplification program finishes.	Very low starting amounts of nucleic acid.	 Increase number of cycles by 10 in the corresponding cycle program. Improve PCR conditions (e.g. MgCl₂ concentration, primer and probe design). Use higher amount of starting material. Repeat the run.
No amplification occurs.	Wrong channel has been chosen to detect amplification online.	Check the channel chosen in the programming screen and change.(The data obtained up to this point will be saved.)
	Pipetting errors or omitted reagents.	 Check for missing reagents. Titrate MgCl₂ concentration. Check for missing or defective dye.
	Measurements do not occur	Check the cycle programs. For Hybridization Probe detection format, choose "single" as acquisition mode at the end of the annealing phase.
	Amplicon length is >1 kb.	Do not use amplicons > 1 kb. Amplification efficiency is reduced with amplicons of this size. Optimal results are obtained for amplicons \leq 700 bp.
	Inhibitory effects of the sample material due to insufficient puri- fication.	 Do not use more than 8-10 µl of RNA per 20 µl RT-PCR reaction mixture. Repurify the nucleic acids to ensure removal of inhibitory agents.
	Unsuitable Hybridization Probes.	Check sequence and location of the Hybridization Probes.
	RNA degradation due to unproper storage or isolation.	 Check RNA quality on a gel. Check RNA with an established primer pair if available.
Fluorescence inten- sity is too high and reaches overflow.	Unsuitable gain settings.	Gain settings cannot be changed during or after a run. Before repeating the run, use the Real Time Fluo- rimeter option to find suitable gain settings. The background fluorescence at measuring temperature should not exceed 20 for Hybridization Probes. <u>Note</u> : Avoid bleaching of dyes by using an extra sample for this procedure.

contined on next page

4.1 Trouble shooting, continued

Problem	Possible cause	Recommendation
Fluorescence intensity is too low.	Low concentration or deteriora- tion of dyes in the reaction mixtures due to unsuitable storage conditions.	Store the dye containing reagents at –20°C, protected from light. Avoid repeated freezing and thawing. Low Hybridization Probe signals can be improved by using a two times higher concentration of the LC-Red labeled probe than of the fluorescein-labeled probe.
	Chosen gain are too low.	Optimize gain setting using the Real Time Fluorim- eter function. Change the gain settings in the cycle programs appropriately and repeat the run.
	Poor PCR efficiency due to non optimized reaction conditions.	 Titrate MgCl₂ concentration Primer concentration should be in the range of 0.3 1.0 μM, probe concentration should be in the range of 0.2–0.4 μM Check annealing temperature of primers and probes. Check experimental protocol Always run a positive control along with your samples. Increase amount of RNA template up to 500 ng total RNA or 100 ng mRNA.
	Poor PCR efficiency due to high GC content or high degree of secondary structures of the RNA.	 Extend the incubation time for the Reverse Transcription (program 1) to 30 min, and for the denaturation during cycling (program 3) to 5 s.
Fluorescence intensity varies	Pipetting errors	When using Hybridization Probes and single color detection, pipetting errors can be diminished by inter- preting the results in the F2/F1 or F3/F1 mode.
	 Prepared PCR mix is still in the upper vessel of the capil- lary. Air bubble is trapped in the capillary tip. 	Repeat centrifugation step.
	Skin oils on the surface of the capillary tip	Always wear gloves when handling the capillaries.
Negative control samples are posi- tive.	Contamination	 Exchange all critical solutions. Pipet reagents on a clean bench. Close lid of the negative control reaction tube immediately after pipetting. Use heat-labile UNG for decontamination of carry-over cross contamination.

contined on next page

4.1 Trouble shooting, continued

Problem	Possible cause	Recommendation
High background	Very low fluorescence signals, therefore the background seems relatively high.	Follow general optimization. strategies for LightCycler PCR.
	Hybridization Probe concentra- tion is too high.	Hybridization Probe concentration should be in the range of 0.2-0.4 $\mu M_{\rm \cdot}$
	Insufficient quality of Hybridiza- tion Probes.	Prepare a new pair of Hybridization Probes.
	Gain settings are too high.	Reduce value of gain setting. Use the Real Time Fluorimeter option to optimize the gain settings.
Amplification curve decreases after reaching the plateau in late cycles.	"Hook effect": competition between binding of the Hybrid- ization Probes pair and re- annealing of the PCR product.	This does not affect interpretation of the results. It can be avoided by performing an asymmetric PCR by favoring the amplification of the DNA strand that the Hybridization Probes bind to.

The technology used for the LightCycler System is licensed from Idaho Technology Inc., Idaho Falls, ID, USA. LightCycler¹⁾ and Expand²⁾ are trademarks of a member of the Roche Group. SYBR³⁾ is a trademark of Molecular Probes Inc., Eugene, OR, USA.

Notice to Purchaser

LIMITED LICENSE: A license under U.S. Patents 4,683,202, 4,683,195, and 4,965,188 or their foreign counterparts, owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd ("Roche"), has an up-front fee component and a running-royalty component. The purchase price of this product includes limited, nontransferable rights under the running-royalty component to use only this amount of the product to practice the Polymerase Chain Reaction ("PCR") and related processes described in said patents solely for the research and development activities of the purchaser when this product is used in conjunction with a thermal cycler whose use is covered by the up-front fee component. Rights to the up-front fee component must be obtained by the end user in order to have a complete license to use this product in the PCR process. These rights under the up-front fee component may be purchased from Applied Biosystems or obtained by purchasing an Authorized Thermal Cycler. No right to perform or offer commercial services of any kind using PCR, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is hereby granted by implication or estoppel. Further information on purchasing licenses to practice the PCR Process may be obtained by contacting the Director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404 or the Licensing Department, Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California 94501.

DISCLAIMER OF LICENSE: No rights for any application, including any in vitro diagnostic application, are conveyed expressly, by implication or by estoppel under any patent or patent applications claiming homogeneous or real-time detection methods, including patents covering such methods used in conjunction with the PCR process or other amplification processes. The 5' nuclease detection assay and certain other homogeneous or real-time amplification and detection methods are covered by United States Patent Nos. 5,210,015, 5,487,972, 5,804,375 and 5,994,056 owned by Roche Molecular Systems, Inc. and by corresponding patents and patent applications outside the United States owned by F. Hoffmann-La Roche Ltd. Purchase of this product conveys no license or right under the foregoing patents. Use of these and other patented processes in conjunction with the PCR process requires a license. For information on obtaining licenses, contact the Licensing Department, Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California, 94501.

4.2 Related products

Product	Pack size	Cat. No.
LightCycler Instrument	1 instrument plus accessories	2 011 468
LightCycler Capillaries	1 pack (8 boxes, each with 96 capillaries and stoppers)	1 909 339
LightCycler Centrifuge Adapters	1 set (32 adapters in an aluminum cooling block)	1 909 312
LightCycler Sample Carousel	1 carousel	1 909 282
LightCycler DNA Master SYBR ³⁾ Green I	1 kit (96 reactions) 1 kit (480 reactions)	2 015 099 2 158 817
LightCycler FastStart DNA Master SYBR ³⁾ Green I	1 kit (96 reactions) 1 kit (480 reactions)	3 003 230 2 239 264
LightCycler DNA Master Hybridization Probes	1 kit (96 reactions) 1 kit (480 reactions)	2 015 102 2 158 825
LightCycler FastStart DNA Master Hybridization Probes	1 kit (96 reactions) 1 kit (480 reactions)	3 003 248 2 239 272
LightCycler Control Kit DNA	1 kit (50 control reactions)	2 158 833
LightCycler RNA Amplification Kit SYBR Green I	1 kit (96 reactions)	2 015 137
LightCycler RNA Master SYBR Green I	1 kit (96 reactions)	3 064 760
LightCycler RNA Master Hybridization Probes	1 kit (96 reactions)	3 018 954
LightCycler Control Kit RNA	1 kit (50 control reactions)	2 158 841
LightCycler Red 705-Phosphoramidite	1 vial for synthesis of 10 oligo- nucleotides labeled at the 5'-end (0.2 μmol scale)	2 157 594
LightCycler Red 640-NHS ester	1 vial for labeling a minimum of 5 × 50 nmol oligonucleotides	2 015 161
LightCycler Fluorescein CPG	5 columns 1 g	3 113 906 3 138 178
LightCycler Color Compensation Set	1 set for 5 calibration runs	2 158 850
Uracil-DNA-Glycosylase, heat-labile	100 units	1 775 367

www.roche-applied-science.com

to order, solve technical queries, find product information,

or contact your local sales representative.

www.roche-applied-science.com/pack-insert/2015145a.pdf

Please visit our new Online Technical Support Site

Roche Diagnostics GmbH Roche Applied Science Nonnenwald 2 82372 Penzberg Germany