For general laboratory use. Not for use in diagnostic procedures. FOR *IN VITRO* USE ONLY.

LightCycler[®] 480 Control Kit

Version 9.0

Content version: July 2010

Real-time PCR control reactions for quantification and melting-curve based genotyping to prove the performance of the LightCycler[®] 480 System

Cat. No. 04 710 924 001

Kit for 3 control reactions

Store the kit at -15 to -25°C

A Keep vials 10, 11, and 12 away from light!

www.roche-applied-science.com

Table of Contents

1.	What this Product Does	. 3
	Number of tests	3
	Kit Contents	3
	Storage and Stability Additional Equipment and Reagents Required	4
	Application	4
	Assay Time / Hands on Time	4
2.	How To Use this Product	. 5
2.1	Before You Begin	5
	Precautions	5
	Sample Material	5
2.2	Experimental Overview	5
2.3	Procedure A: Quantification	6
2.3.1		6
	LightCycler [®] 480 Instrument Protocol Preparation of the PCR Mixes	6 7
	Evaluation	10
232	Quantification with SYBR Green I (optional)	11
2.0.2	LightCycler [®] 480 Instrument Protocol	11
	Preparation of the PCR Mixes	12
	Evaluation	13
2.4	Procedure B: Genotyping with HybProbe probes	14
	LightCycler [®] 480 Instrument Protocol	14
	Preparation of the PCR Mix	15
3.	Evaluation Results	16 17
э. 3.1	Typical Results Obtained in Procedure A	17
3.1.1	51	17
5.1.1	Filter Combination for the Quantification Target	17
	Filter Combination for the Internal Control	18
3.1.2	Quantification with SYBR Green I	19
	Quantification	19
3.2	Typical Results Obtained in Procedure B	21
	Part 1: Quantification using Filter Combination (483 – 640)	21
	Part 2: Melting Curve Analysis using Filter Combination (483 - 640)	22
4.		23
5.	Additional Information on this Product	
	How this Product Works References	24 24
	Quality Control	24
6.		25
6.1	Conventions	25
0	Text Conventions	25
	Symbols	25
6.2	Changes to Previous Version	25
6.3	Ordering Information	25
6.4	Disclaimer of License	27
65	NOTICE TO PURCHASER	27
6.5 6.6	Trademarks Regulatory Disclaimer	27 27
0.0		21

P R

0 T 0 C 0

L

Р

R O T O C O

L

1. What this Product Does

Number of tests The kit contains reagents for 3 control runs for quantification with hydrolysis probes and 3 control runs for genotyping with HybProbe probes, with reaction volumes of 20 μl.

Kit Contents

Vial/Cap	Label	Contents / Function
1 yellow	Standard 1 10 ² copies / 5 μl	 45 μl target: wild type plasmid DNA
2 yellow	Standard 2 10 ³ copies / 5 μl	 405 μl target: wild type plasmid DNA
3 yellow	Standard 3 2×10^3 copies / 5 µl	 405 μl target: wild type plasmid DNA
4 yellow	Standard 4 10 ⁴ copies / 5 μl	 45 μl target: wild type plasmid DNA
5 yellow	Standard 5 10 ⁵ copies / 5 μl	 90 μl target: wild type plasmid DNA
6 yellow	Standard 6 10 ⁶ copies / 5 μl	 45 μl target: wild type plasmid DNA
7 yellow	Standard 7 Heterozygote	 45 μl target: heterozygous plasmid DNA
8 yellow	Standard 8 Mutation	 45 μl target: mutant plasmid DNA
9 blue	Primer Mix 20× conc.	 • 243 μl • mix of two target-specific primers
10 red	Genotyping Probes 10× conc.	 80 μl HybProbe probe mix Probe 1: Fluorescein-labeled at the 3' end Probe 2: LightCycler[®] Red 640-labeled at the 5' end
11 green	Quantification Probe 10× conc.	 450 μl FAM-labeled hydrolysis probe
12 purple	Internal Control 10× conc.	 450 μl primer, probe and template mix, containing LightCycler[®] Red 610-labeled hydrolysis probe for detection of control DNA sequence
13 colorless	H_2O , PCR grade	1,000 µl

Storage and Stability	label.	
Additional Equipment and Reagents Required	LightCycler [®] 480 Control Kit using • LightCycler [®] 480 Instrument, 96 • LightCycler [®] 480 Probes Master • LightCycler [®] 480 Multiwell Plate	* 96 or 384 with LightCycler [®] 480 Sealing Foil* uge containing a rotor for multiwell plates pipette tips
Application	components of the LightCycler [®] 4 disposables, generic reagents and The kit is primarily for use with the cedure A and B), but it can also Green I Master (for procedure A) (for procedure B). The test includes two control expe tification of prediluted standard E samples with a wild type DNA set gous or heterozygous point mutation	wn in this instruction manual is guaranteed
Assay Time /	Quantification with hydrolysis	probes
Hands on Time	Procedure	Time
	Prepare PCR mixes	10 min
	Pipette into plate	15 min
	PCR run	40 min
	Total assay time	1 h 5 min
	Genotyping with HybProbe prol	bes
	Procedure	Time
	Prepare the PCR mix	10 min
	Pipette into plate	5 min
	PCR run	50 min

1 h 5 min

Total assay time

2. How To Use this Product

2.1 Before You Begin

Precautions Always wear gloves when handling the PCR mixes and plates.

Sample Material Template DNA is included in this kit.

2.2 Experimental Overview

Reagents for different analysis types are provided with the kit:

- Procedure A: Gene quantification
- · Procedure B: Genotyping

The following procedures show how to use the LightCycler® 480 Control Kit.

 \triangle The procedures are optimized for a final reaction volume of 20 μ l.

Procedure A: Gene quantification

- ① Set up instrument.
- ② Prepare 3 reaction mixes:
 - PCR mix 1: for 24-fold replicates of 1,000 copies of target DNA
 - PCR mix 2: for 24-fold replicates of 2,000 copies of target DNA
 - PCR mix 3: for standard curve
- ③ Pipette into multiwell plate.
- (4) Run PCR on the LightCycler[®] 480 Instrument.
- (5) Interpret results.

Procedure B: Genotyping

- ① Set up instrument.
- Prepare reaction mix.
- ③ Pipette into multiwell plate.
- ④ Run PCR on the LightCycler[®] 480 Instrument.
- (5) Interpret results.

2.3 Procedure A: Quantification

A 136 bp fragment of the Cyp2C9 gene is amplified from plasmid DNA and detected with a FAM-labeled hydrolysis probe. To test the precision of the system, replicates with only 1,000 or 2,000 copies of target DNA per well are distributed throughout the plate and quantified with reference to a row of standards.

If the target PCR in a particular well is negative or only weakly positive, an internal control can prove absence of PCR inhibition. Therefore an additional DNA target is amplified simultaneously in each well and detected with a LightCycler[®] Red 610-labeled probe in a separate optical channel.

Alternatively, quantification of the target DNA can be achieved by detection with SYBR Green I, using the LightCycler[®] SYBR Green I Master instead of the LightCycler[®] Probes Master (see 2.3.2). In this case no probes are necessary and there is no internal control applicable.

2.3.1 Quantification with Hydrolysis Probes

LightCycler[®] 480 S Program the LightCycler[®] 480 Instrument before preparing the reaction mixes.

A LightCycler[®] 480 Instrument protocol for procedure A using the LightCycler[®] 480 Probes Master and the LightCycler[®] 480 Control Kit contains the following programs:

- **Pre-Incubation** to activate FastStart Taq DNA polymerase and denature the DNA
- Amplification of the target DNA
- **Cooling** the multiwell plate

For details on how to program the experimental protocol, see the LightCycler® 480 Operator's Manual.

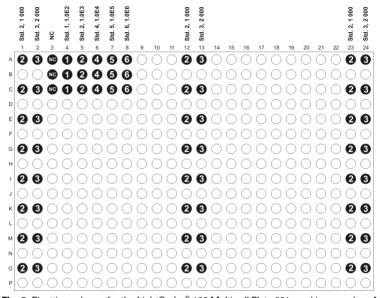
Settings for the 384-well block type that differ from the 96-well settings are given in brackets.

Protocol

Detection F	ormat	Blo	ck Type	Reaction	n Volume	
Multi Color I probes	nydrolys	sis 96 (384)	20 µl		
Detection Fo	ormat:	Cus	tomized forma	at		
Filter setting		483-533, 558	er® 480 Instru	Red 610 510, 533–610 i iment Version		
Programs						
Program Na	ame	Сус	les	Analysis	Mode	
Pre-Incubati	on	1		None		
Amplification	า	40		Quantification		
Cooling		1		None		
Temperatu	re Targ	ets				
1	arget (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate (°C/s)	Acquisitions (per °C)	
Pre-Incubati	on					
	95	None	00:05:00	4.4 (4.8)	-	
Amplification	า					
Segment 1:	95	None	00:00:10	4.4 (4.8)	-	
Segment 2:	60	Single	00:00:30	2.2 (2.5)	_	
Segment 3:	72	None	00:00:01	4.4 (4.8)	-	
Cooling						
	40	None	00:00:30	1.5 (2.0)	-	

Preparation of the A Do not touch the upper surface of the LightCycler® 480 Multiwell Plate when handling it

0	Thaw the following reagents, mix gently and store on ice:
•	• LightCycler [®] 480 Probes Master: vial 1
	• LightCycler [®] 480 Control Kit: vials 1, 2, 3, 4, 5, 6, 9, 11, 12


Prepare PCR mixes		
Prepare all three PCR mixes the plate.	s (A, B, C)	before dispensing to
PCR Mix A (24-fold replicates of a standard get DNA) To a 1.5 ml reaction tube on ice,	, add the c	omponents in the
order given below, mix gently, c		
Component	Vol	Final conc.
LightCycler [®] 480 Probes Master		1×
Primer Mix, 20× (vial 9)	27 µl	1×
Quantification Probe, 10× (vial 11)	54 µl	1×
nternal Control, 10× (vial 12)	54 μl	1×
Standard 2 (vial 2)	135 µl	1,000 copies/20 μl
get DNA) Fo a 1.5 ml reaction tube on ice, order given below, mix gently, c		
		omponents in the
To a 1.5 ml reaction tube on ice, order given below, mix gently, c	lose the tu Vol	omponents in the be and store on ice.
or a 1.5 ml reaction tube on ice, order given below, mix gently, c Component	lose the tu Vol	omponents in the be and store on ice.
o a 1.5 ml reaction tube on ice, order given below, mix gently, c Component _ightCycler [®] 480 Probes Master	lose the tu Vol 270 μl	omponents in the be and store on ice. Final conc. 1×
To a 1.5 ml reaction tube on ice, brder given below, mix gently, c Component LightCycler [®] 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10×	lose the tu Vol 270 μl 27 μl	omponents in the be and store on ice. Final conc. 1× 1×
To a 1.5 ml reaction tube on ice, brder given below, mix gently, c Component LightCycler [®] 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10× (vial 11) nternal Control, 10× (vial 12) Standard 3 (vial 3)	lose the tu Vol ² 270 μl 27 μl 54 μl	omponents in the be and store on ice. Final conc. 1× 1× 1× 1×
To a 1.5 ml reaction tube on ice, order given below, mix gently, c Component LightCycler® 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10× (vial 11) nternal Control, 10× (vial 12)	lose the tu Vol 270 μl 27 μl 54 μl 135 μl and negative add the c lose the tu ne multiwe	omponents in the be and store on ice. Final conc. 1× 1× 1× 2,000 copies/20 µl //e control) omponents in the be and store on ice. Il plate after PCR Mix
To a 1.5 ml reaction tube on ice, brder given below, mix gently, c Component LightCycler® 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10× (vial 11) Internal Control, 10× (vial 12) Standard 3 (vial 3) PCR Mix C To generate a standard curve a To a 1.5 ml reaction tube on ice, order given below, mix gently, c Standard DNA is added to the	lose the tu Vol 270 μl 27 μl 54 μl 135 μl and negative add the c lose the tu ne multiwe	omponents in the be and store on ice. Final conc. 1× 1× 1× 2,000 copies/20 µl //e control) omponents in the be and store on ice. Il plate after PCR Mix
To a 1.5 ml reaction tube on ice, border given below, mix gently, c Component LightCycler® 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10× (vial 11) Internal Control, 10× (vial 12) Standard 3 (vial 3) PCR Mix C To generate a standard curve a To a 1.5 ml reaction tube on ice, order given below, mix gently, c Standard DNA is added to th C is dispensed (see steps 4 a	lose the tu Vol 270 μl 27 μl 54 μl 135 μl 135 μl 135 μl 135 below Vol	omponents in the be and store on ice. Final conc. 1× 1× 1× 1× 2,000 copies/20 µl ////////////////////////////////////
To a 1.5 ml reaction tube on ice, brder given below, mix gently, c Component LightCycler® 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10× vial 11) nternal Control, 10× (vial 12) Standard 3 (vial 3) PCR Mix C To generate a standard curve a To a 1.5 ml reaction tube on ice, order given below, mix gently, c Standard DNA is added to th C is dispensed (see steps 4 a Component LightCycler® 480 Probes Master	lose the tu Vol 270 μl 27 μl 54 μl 135 μl 135 μl add the c lose the tu he multiwe and 5 below Vol 200 μl	omponents in the be and store on ice. Final conc. 1× 2,000 copies/20 µl //e control) omponents in the be and store on ice. ell plate after PCR Mix w). Final conc.
To a 1.5 ml reaction tube on ice, brder given below, mix gently, c Component LightCycler® 480 Probes Master Primer Mix, 20× (vial 9) Quantification Probe, 10× (vial 11) Internal Control, 10× (vial 12) Standard 3 (vial 3) PCR Mix C To generate a standard curve a To a 1.5 ml reaction tube on ice, order given below, mix gently, c Standard DNA is added to th C is dispensed (see steps 4 a Component	lose the tu Vol 270 μl 27 μl 54 μl 135 μl 135 μl 135 μl 135 below Vol	omponents in the be and store on ice. Final conc. 1× 1× 1× 1× 2,000 copies/20 μl /e control) omponents in the be and store on ice. Il plate after PCR Mix w). Final conc. 1.33×

1.33×

40 µl

•	 Dispense 20 μl from either PCR mix A or PCR Mix B into each of the plate wells indicated on the pipetting scheme below: PCR mix A (with Standard 2) into the indicated wells of columns 1, 12 and 23 PCR mix B (with Standard 3) into the indicated wells of columns 2, 13 and 24 													
4		con (see	tain i pipe	negat etting	tive c I sch	contro eme	ol and belov	d Sta v).	ndaro	ds 1,	2, 4,	5, 6 ii	n trip	at will licate
6		pipe Neg Star	etting Jative Indarc) sche	eme trol (/e:	belov NC):	v: H ₂ O,	PCR	grad					on the
				ard 2										
				ard 4										
				ard 5										
				ard 6										
6		 Plating that an an	ace tl at co d ba ultiwe entrif	he mi ntain lance ell pla uge a	ultiw s a ro e it w ate). at 1,5	ell pla otor f ith a 00 ×	ate in for m suita g foi	a sta ultiw ble c	ell pla count in.	rd sw ates v erwe	ing-b with s ight (oucke suital (<i>e.g.</i> ,	et cer ble ac anot	ntrifuge daptors her
0		Loa	d the	e mult	tiwel	l plat	e into	b the	Light	tCycl	er® 4	80 In	strur	nent.
8		Star	t the	PCR	prog	gram	desc	ribec	l abo	ve.				
		1	2	3	4	5	6	7	8	9	10	11	12	
		6	3	NC	NC	NC	2	3	0	9	\bigcirc	2	3	
	A	2	9	NG	NC		U	9	\bigcirc	\bigcirc	\bigcirc	9	9	
	в	2	3	1	1	1	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	
	С	2	3	2	2	2	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	
	D	2	3	4	4	4	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	
	Е	2	3	5	-	6	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	
	F	0		6	6	6		-	\bigcirc	\bigcirc	\bigcirc	2	3	
	G	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	
	н	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	\bigcirc	\bigcirc	\bigcirc	2	3	
Fig 1 Pir	nettir	าก รถ	heme	for th	ne Lia	htCvc	ler® 4	80 M	ultiwe	II Plat	e 96 i	ised ii	n nroc	edure A

Fig. 1: Pipetting scheme for the LightCycler[®] 480 Multiwell Plate 96 used in procedure A. Positions are indicated for negative control (2) and standards (1) (2) (3) (4) (5) (6), respectively.

Fig. 2: Pipetting scheme for the LightCycler[®] 480 Multiwell Plate 384 used in procedure A. Positions are indicated for negative control **w** and standards **1 2 3 4 5 6**, respectively.

Evaluation

- Make sure the concentrations of the standards (three replicates each) are defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaluation, use 'Subset Editor' and define a subset for the used plate positions.
- Under 'Analysis', open the 'Absolute Quantification' module for this subset, make sure filter combination FAM (483 533, LightCycler[®] 480 Instrument I; 465 510, LightCycler[®] 480 Instrument II) is displayed, and click 'Calculate' to calculate the crossing points and standard curve.
- For analysis of the internal control, switch to filter combination Red 610 (558 - 610, LightCycler[®] 480 Instrument I; 533 - 610, LightCycler[®] 480 Instrument II).

2.3.2 Quantification with SYBR Green I (optional)

LightCycler[®] 480 Program the LightCycler[®] 480 Instrument before preparing the reaction mixes. Protocol A LightCycler[®] 480 protocol for procedure A using the LightCycler[®] 480 SYBB

A LightCycler[®] 480 protocol for procedure A using the LightCycler[®] 480 SYBR Green I Master and the LightCycler[®] 480 Control Kit contains the following programs:

- Pre-Incubation to activate FastStart Taq DNA polymerase and denature the DNA
- Amplification of the target DNA
- Melting Curve to identify PCR products
- Cooling the multiwell plate

For details on how to program the experimental protocol, see the LightCycler $^{\circledast}$ 480 Operator's Manual.

Settings for the 384-well block type that differ from the 96-well settings are given in brackets.

-							
Set-Up							
Detection F	ormat	Bloc	ck Type	Reactio	Reaction Volume		
SYBR Green		96 (3	384)	20 µl			
Filter Setting		dyna	amic mode, SYBF	R Green I			
Programs							
Program Na	ame	Сус	les	Analysi	is Mode		
Pre-Incubati	on	1		None			
Amplification	า	35		Quantifi	cation		
Melting Curv	/e	1		Melting	Curves		
Cooling		1		None			
Temperatu	re Tarç						
Та	arget	Acquisitio		Ramp Rate	e Acquisitions		
	(°C)	n Mode	(hh:mm:ss)	(°C/s)	(per °C)		
Pre-Incubati	on						
	95	None	00:05:00	4.4 (4.8)	-		
Amplification	1						
Segment 1:	95	None	00:00:20	4.4 (4.8)	-		
Segment 2:	60	None	00:00:15	2.2 (2.5)	-		
Segment 3:	72	Single	00:00:15	4.4 (4.8)	-		
Melting Curv	/e						
Segment 1:	95	None	00:00:05	4.4 (4.8)	-		
Segment 2:	70	None	00:01:00	2.2 (2.5)	-		
Segment 3:	95	Continuous	; -	-	2		
Cooling							
	40	None	00:00:30	1.5 (2.0)	-		

Preparation of the	⋒	Do not touch the surface of the LightCycl	er® 480 ľ	Nultiwell Plate when				
PCR Mixes		handling it.						
	Ō	Thaw the following reagents, mix gently an	d store o	n ice:				
		• LightCycler [®] 480 SYBR Green I Master: vi	al 1					
		• LightCycler [®] 480 Control Kit: vials 1, 2, 3,	4, 5, 6, 9, ⁻	13				
	0							
		A Prepare all three PCR mixes (A, B, C) be	ensing to the plate.					
		PCR Mix A						
		(24-fold replicates of a standard containing	j 1,000 co	pies of target				
		DNA)	mnonont	a in the order airron				
		To a 1.5 ml reaction tube on ice, add the co below, mix gently, close the tube and store		s in the order given				
		Component	Vol	Final conc.				
		Water PCR-grade (vial 13)	108 μl					
		LightCycler [®] 480 SYBR Green I Master	270 µl					
		Primer Mix, 20× (vial 9)	27 µl					
		Standard 2 (vial 2)		1,000 copies/20 µl				
		PCR Mix B						
		(24-fold replicates of a standard containing 2,000 copies of target DNA)						
		To a 1.5 ml reaction tube on ice, add the components in the order given						
		below, mix gently, close the tube and store						
		Component	Vol	Final conc.				
		Water PCR-grade (vial 13)	108 µl					
		LightCycler [®] 480 SYBR Green I Master	270 µl					
		Primer Mix, 20× (vial 9)	27 µl					
		Standard 3 (vial 3)	135 µl	2,000 copies/20 µl				
		PCR Mix C	t ue D					
		(To generate a standard curve and negative To a 1.5 ml reaction tube on ice, add the co						
		below, mix gently, close the tube and store	on ice.					
		▲ Standard DNA is added to the multiwell		er PCR Mix C is dis-				
		pensed (see steps 4 and 5 below.).	piaco are					
		Component	Vol	Final conc.				
		Water PCR-grade (vial 13)	80 µl	-				
		LightCycler [®] 480 SYBR Green I Master	200 µl	1.33×				
		LightCycler [®] 480 SYBR Green I Master Primer Mix, 20× (vial 9)		1.33× 1.33×				

 plate wells indicated on the pipetting scheme in chapter 3.2.1: PCR mix A (with Standard 2) into the indicated wells of columns 1, 1 and 23 PCR mix B (with Standard 3) into the indicated wells of columns 2, 1 and 24 Dispense 15 µl from PCR mix C into each of the wells that will contair negative control and Standards 1, 2, 4, 5, 6 in triplicate (see pipetting scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.,</i> another multiwell plate). Centrifuge at 1,500 × <i>g</i> for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. 		Dispanse 20 I from either DCD min A or DCD Min D into each of the
 PCR mix A (with Standard 2) into the indicated wells of columns 1, 1 and 23 PCR mix B (with Standard 3) into the indicated wells of columns 2, 1 and 24 Dispense 15 µl from PCR mix C into each of the wells that will contair negative control and Standards 1, 2, 4, 5, 6 in triplicate (see pipetting scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Chard to fully a standard for multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge th contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × <i>g</i> for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate positior Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Calling the curve.	3	
 and 23 PCR mix B (with Standard 3) into the indicated wells of columns 2, 1 and 24 Dispense 15 µl from PCR mix C into each of the wells that will contain negative control and Standards 1, 2, 4, 5, 6 in triplicate (see pipetting scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge th contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evation, use 'Subset Editor' and define a subset for the used plate positior Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Calling and the provide the concenter is the provide the constanter is the provide the constanter is calculate crossing points and standard curve.		
 PCR mix B (with Standard 3) into the indicated wells of columns 2, 1 and 24 Dispense 15 µl from PCR mix C into each of the wells that will contain negative control and Standards 1, 2, 4, 5, 6 in triplicate (see pipetting scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 5 (10⁶ copies of DNA) Standard 5 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Centrifuge at 1,500 × <i>g</i> for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaluation, use 'Subset Editor' and define a subset for the used plate positior Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the ' <i>T</i> _m Calling		
 and 24 Dispense 15 µl from PCR mix C into each of the wells that will contain negative control and Standards 1, 2, 4, 5, 6 in triplicate (see pipetting scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 7 (10⁵ copies of DNA) Standard 7 (10⁵ copies of DNA) Standard 7 (10⁵ copies of DNA) Standard 7 (10⁶ copies of DNA) Standard 8 (10⁶ copies of DNA) Standard 8 (10⁶ copies of DNA) Standard 9 (10⁶ copies of DNA) Standard 9 (10⁶ copies of DNA) Standard 9 (10⁶ copies of DNA) Standard 1 (10² copies of DNA) Standard 1 (10² copies of DNA) Standard 9 (10⁶ copies of DNA) A seal the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Make sure the concentrations of the		
 negative control and Standards 1, 2, 4, 5, 6 in triplicate (see pipetting scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge th contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the ' <i>T_m</i> Calling and the standard curve.		
 scheme in figure 1 and 2). Add 5 µl of each Standard to three plate wells as indicated in figures and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge th contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Callin	4	Dispense 15 μ l from PCR mix C into each of the wells that will contain
 and 2 in the preceding chapter: Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate positior Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Calling the standard curve.		
 Negative control (NC): H₂O, PCR grade (from vial 13). Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Callin	6	Add 5 μ l of each Standard to three plate wells as indicated in figures 1
 Standard curve: Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 6 (10⁶ copies of DNA) Standard 7 (10⁶ copies of DNA) Standard 8 (10⁶ copies of DNA) Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler [®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eval tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Callin'	-	and 2 in the preceding chapter:
 Standard 1 (10² copies of DNA) Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evation, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Callin		
 Standard 2 (10³ copies of DNA) Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evation, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Calling'		
 Standard 4 (10⁴ copies of DNA) Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T _m Calling'		
 Standard 5 (10⁵ copies of DNA) Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaltion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for the subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Callin' 		
 Standard 6 (10⁶ copies of DNA) Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaltion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for the subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the ' <i>T_m</i> Calling'		
 Seal the multiwell plate with LightCycler[®] 480 Sealing Foil. Place the multiwell plate in a standard swing-bucked centrifuge th contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaltion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m Calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m calling the standard second analysis with the 'Plus' button, choose the '<i>T</i>_m calling the standard second analysis with the 'Plus' button second second analysis with the 'Plus' button second second		
 Place the multiwell plate in a standard swing-bucked centrifuge the contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaltion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for the subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 	<u> </u>	
 contains a rotor for multiwell plates with suitable adaptors and bala it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evation, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Callin' 	6	
 it with a suitable counterweight (<i>e.g.</i>, another multiwell plate). Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 		
 Centrifuge at 1,500 × g for 2 min. Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaltion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for the subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 		
 Load the multiwell plate into the plate holder of the LightCycler[®] 480 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaltion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for the subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 		
 Instrument. Start the PCR program described above. Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evation, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for the subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 	0	
 Make sure the concentrations of the standards (three replicates each) defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 	•	
 defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Callin' 	8	Start the PCR program described above.
 defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster eva tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Callin' 		
 tion, use 'Subset Editor' and define a subset for the used plate position Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 	⚠	Make sure the concentrations of the standards (three replicates each) ar
 Under 'Analysis', open the 'Absolute Quantification' module for th subset and click 'Calculate' to calculate crossing points and standard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Calling' 		defined in the 'Sample Editor' in the 'Abs Quant' folder. For faster evaluated
 subset and click 'Calculate' to calculate crossing points and stan- dard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Callin 		tion, use 'Subset Editor' and define a subset for the used plate positions.
 subset and click 'Calculate' to calculate crossing points and stan- dard curve. Add a second analysis with the 'Plus' button, choose the 'T_m Callin 	0	Under 'Analysis', open the 'Absolute Quantification' module for this
2 Add a second analysis with the 'Plus' button, choose the ' $T_{\rm m}$ Callin	-	subset and click 'Calculate' to calculate crossing points and stan-
		dard curve.
	0	Add a second analysis with the 'Plus' button, choose the 'Tm Calling'
module for this subset and click 'Calculate' to calculate T_m values	•	module for this subset and click 'Calculate' to calculate $T_{\rm m}$ values.

Evaluation

2.4 Procedure B: Genotyping with HybProbe probes

A 136 bp fragment of the Cvp2C9 gene is amplified with specific primers from different types of plasmid DNAs (wild type, mutant, heterozygote). Amplification products are identified with HybProbe probes.

Alternatively, the LightCycler[®] 480 Probes Master or the LightCycler[®] 480 Genotyping Master can be used with the same protocol.

Q Program the LightCycler[®] 480 Instrument before preparing the reaction LightCycler[®] 480 mixes Instrument

Protocol

A LightCycler[®] 480 Instrument protocol that uses the LightCycler[®] 480 Probes Master and the LightCycler[®] 480 Control Kit with procedure B contains the following programs:

- Pre-Incubation to activate FastStart Tag DNA polymerase and denature the DNA
- Amplification of the target DNA
- Melting Curve to identify the PCR product
- Cooling the plate

For details on how to program the experimental protocol, see the LightCvcler[®] 480 Operator's Manual.

Settings for the 384-well block type that differ from the 96-well settings are given in brackets

Detection F	ormat	Blo	ck Type	Reaction Vo	olume
Mono Color	HybPro	obe 96 (384)	20 µl	
Filter Setting	l	dyna	amic mode, R	ed 640	
Programs					
Program Na	ame	Cyc	les	Analysis	6 Mode
Pre-Incubati	on	1		None	
Amplification	n	35		Quantific	ation
Melting Curv	ve	1		Melting	Curves
Cooling		1		None	
Temperatu	re Targ	ets			
Т	arget (°C)	Acquisition Mode	Hold (hh:mm:ss)	Ramp Rate) (°C/s)	Acquisition (per °C)
Pre-Incubati	on				
	95	None	00:05:00	4.4 (4.8)	-
Amplification	n				
Segment 1:	95	None	00:00:10	4.4 (4.8)	-
Segment 2:	55	Single	00:00:10	2.2 (2.5)	-
Segment 3:	72	None	00:00:10	4.4 (4.8)	-
Melting Curv	ve				
Segment 1:	95	None	00:01:00	4.4 (4.8)	-
Segment 2:	40	None	00:01:00	2.2 (2.5)	-
	80	Continuous	-	-	2
Segment 3:					
Segment 3: Cooling					

Procedure B: Preparation of the PCR Mix

Preparation of the PCR Mix

0	Thaw the following reagents, mix gently and store on ice: • LightCycler [®] 480 Probes Master or LightCycler [®] 480 Genoty-
	ping Master: vial 1 • LightCycler [®] 480 Control Kit: vials 5, 7, 8, 9, 10

	0	In a 1.5 ml reaction tube on ice, add the components in the order mentioned below, mix gently, close the tube.		
		If you use the LightCycler [®] 480 Probes Master:		
		Component	Vol	Final conc.
		H ₂ O, PCR grade	20 µl	_
		LightCycler [®] 480 Probes Master	100 µl	1.33×
		Primer Mix, $20 \times$ (vial 9)	10 µl	1.33×
		Genotyping Probe, 10× (vial 10)	20 µl	1.33×
		Alternatively, using LightCycler [®] 480 Genotyping Master:		typing Master:
		Component	Vol	Final conc.
		H ₂ O, PCR grade	80 µl	_
		LightCycler [®] 480 Genotyping Master	40 µl	1.33×
		Primer Mix, 20 $ imes$ (vial 9)	10 µl	1.33×
		Genotyping Probe, 10× (vial 10)	20 µl	1.33×
	8	Choose 9 wells of the plate and p of these wells.	ipette 15	µl PCR mix into each
	0	Add standard DNA to these 9 we triplicate: • three wells Wild Type (vial 5) • three wells Heterozygous (vial 7 • three wells Mutation (vial 8)	·	ell, each standard in
	5	 Seal the plate with LightCycler[®] Place the multiwell plate in the or suitable counterweight (<i>e.g.</i>, an Centrifuge at 1,500 × g for 2 million 	centrifuge other mu	and balance it with a
	6	Load the multiwell plate into the	LightCycl	er® 480 Instrument.
	Ð	Start the PCR program described	above.	
Evaluation				
	0	In the 'Subset Editor', define a subset with the 9 used plate posi- tions.		
	0	Under 'Analysis' open the 'Absolu this subset and click 'Calculate' to values versus cycle numbers.		
	6	Add the second analysis with the Calling' module for this subset an the $T_{\rm m}$ values.		

3. Results

3.1 Typical Results Obtained in Procedure A

3.1.1 Quantification with Hydrolysis Probes

Filter The following amplification curves were optained when procedure A was monitored in the FAM channel. The plot shows fluorescence versus cycle number.

Target

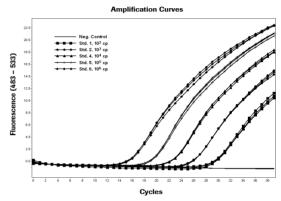


Fig. 3: Amplification curves of the standards in the FAM channel

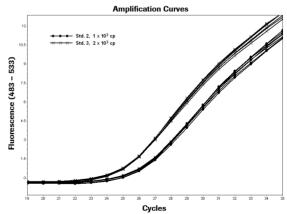
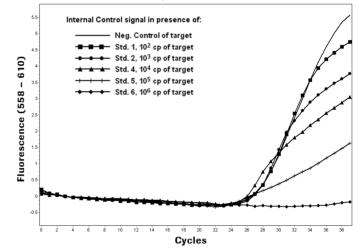



Fig. 4: The amplification curves of the replicates with 1,000 or 2,000 copies of target DNA are clearly separated in the FAM channel.

Filter Combination for the Internal ControlThe following amplification curves of the internal control were optained when procedure A was monitored in the channel for LightCycler[®] Red 610. The control template is present in each well at a constant concentration of about 100 copies. Crossing points in each well are similar, because the amount of template was

the same for each well. Due to competition between the target and the control PCR, the higher the amount of target DNA the lower the yield of PCR product from the internal control.

- If the target PCR in a particular well is negative or only weakly positive, the internal control can prove absence of PCR inhibition.
- If the target DNA concentration is high and the crossing point is early, the internal control may give a negative result, because target and control reaction compete for the same PCR reagents, but in this case there is no need to prove absence of inhibition.

Amplification Curves

Fig. 5: Amplification curves of the internal control in the Red 610 channel

3.1.2 Quantification with SYBR Green I

Quantification The following amplification curves were optained when procedure A was monitored in the channel for SYBR Green I. The plot shows fluorescence versus cycle number.

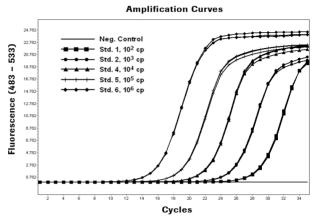
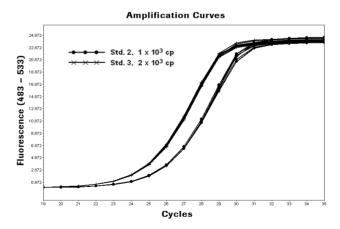



Fig. 6: Amplification curves of the standards detected with SYBR Green

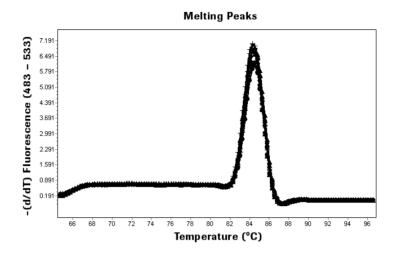


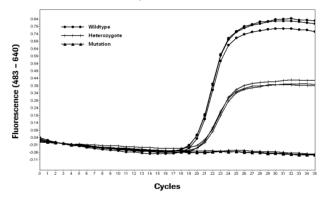
Fig. 8: Melting curve analysis results in a single peak for each positive sample, proving amplification of only the specific target sequence and no byproducts.

3.2 Typical Results Obtained in Procedure B

Part 1:

Ouantification

using Filter Combination


(483 - 640)

Data analysis is divided into two parts: Part 1: Quantification with Absolute Quantification module Part 2: Melting curve analysis with T_m Calling module,

The following amplification curves were obtained when procedure B was analyzed with the Absolute Quantification module using filter combination (483 -640, LightCycler[®] 480 Instrument I).

When there is a mismatch between the mutant DNA and the reporter probe, the annealing temperature during the PCR cycles is higher than the melting temperature of the probe-DNA hybrid. Hence, an amplification signal is only obtained from the wild type DNA.

The plot shows fluorescence versus cycle number.

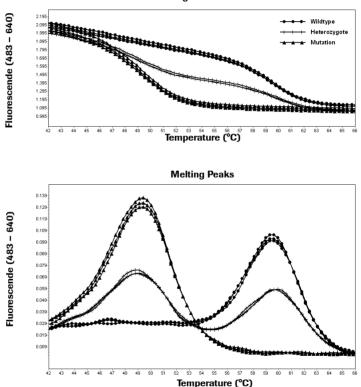

Amplification Curves

Fig. 9: Amplification curves of wild type and mutant target DNAs.

Using the LightCycler[®] 480 Genotyping Master, crossing points may occur about 5 cycles later. Data in this figure are produced with the LightCycler[®] 480 Probes Master.

Part 2: Melting
Curve AnalysisMelting curve analysis obtained when procedure B was analyzed with the T_m
Calling module using filter combination.Sum Sing Filter
Combination
(483 - 640)Melting curve analysis obtained when procedure B was analyzed with the T_m
Calling module using filter combination.Weith the same ling temperature that is approx. 11°C lower because of the
mismatch.

The plot shows (top) fluorescence versus temperature and (bottom) the first derivative of fluorescence versus temperature.

Melting Curves

Fig. 10: Melting curve analysis of the PCR product with and without the mutation.

4. Troubleshooting

	Possible Cause	Recommendation
No amplification visible	Wrong channel was chosen for monitoring amplification.	Check the channel chosen on the program- ming screen.
	Pipetting errors or omitted reagents.	Check all reagents, especially for missing dye.
	Measurements do not occur.	Check the cycle programs. Choose "single" as acquisition mode at the end of the annealing phase for detection with hydroly- sis probes and HybProbe probes.
Fluorescence intensity varies	Pipetting errors	Repeat experiment with improved pipetting accuracy or using an appropriate pipetting robot.
Negative control samples give posi- tive values	Contamination	 Replace all critical solutions. Pipette reagents on a clean bench. Use heat-labile Uracil DNA-Glycosilase* (UNG) to eliminate carryover contamination from PCR products

O Please refer to the package insert of your LightCycler[®] 480 System kits for further troubleshooting suggestions.

5. Additional Information on this Product

How this Product	Experiment A, Quantification:		
Works	A 136 bp fragment of the human CyP2C9 gene is amplified from plasmid DNA and detected with a short hydrolysis probe that is labeled with FAM (probe #80 from the Universal ProbeLibrary*). To test the precision of the LightCycler [®] 480 System, replicates with only 1,000 or 2,000 copies of target DNA per well are distributed throughout the plate and quantified with reference to a row of standards.		
	As an internal control (to prove absence of PCR inhibition), a small amount (about 100 copies) of an artificial DNA template is added to each well. This control is co-amplified with the target DNA. Its amplification is detected simultaneously with a LightCycler [®] Red 610-labeled hydrolysis probe. The results are displayed in a separate optical channel. The distances between the wavelengths of the two detection channels (483 - 533 and 558 - 610, LightCycler [®] 480 Instrument I; 465 - 510 and 618 - 660, LightCycler [®] 480 Instrument II) are high enough that there is no need to use color compensation to correct for crosstalk.		
	Alternatively, the target amplification can be detected using SYBR Green I. By subsequent melting curve analysis of the PCR product, the specificity of the reaction can be proven.		
	Experiment B, Genotyping: The same 136 bp fragment of the CyP2C9 gene is amplified from different samples of plasmid DNA. This gene is known to contain a single nucleotide polymorphism (SNP), and various samples included in the experiment contain the wild type sequence, the homozygous point mutation and heterozygote DNA with wild type and mutant strands. With HybProbe probes for detection, a subsequent melting curve analysis can be used for identification of the dif- ferent genotypes, because the probe melts off the perfectly matched sequence and the mismatched sequence at different melting temperatures.		
References	 PCR Manual, Roche Diagnostics (1999) 2nd edition (1999) 2, 52-58. Zipper H et al. (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. <i>Nuc. Acid Res.</i> 32, e103. Kellogg DE et al. (1994). TaqStart Antibody: "hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. <i>Biotechniques</i> 16, 1134-1137. 		
Quality Control	The LightCycler [®] 480 Control Kit is function tested with the LightCycler [®] 480 System and the LightCycler [®] 480 Probes Master, according to the protocols described above.		

6. Supplementary Information

6.1 Conventions

Text Conventions To make information consistent and memorable, the following text conventions are used in this Instruction Manual:

Text Convention	Usage
Numbered stages labeled (1), (2) etc.	Stages in a process that usually occur in the order listed.
Numbered instructions labeled () , (2) etc.	Steps in a procedure that must be performed in the order listed.
Asterisk *	Denotes a product available from Roche Applied Sci- ence.

Symbols

In this Instruction Manual, the following symbols are used to highlight important information:

Symbol	Description
0	Information Note: Additional information about the current topic or procedure.
▲	Important Note: Information critical to the success of the procedure or use of the product.

6.2 Changes to Previous Version

- · Correction of the filling volume in vial 10 (Genotyping Probes).
- Change of License Disclaimer and finalization of trademarks.
- · Editorial changes

6.3 Ordering Information

Roche Applied Science offers a large selection of reagents and systems for life science research. For a complete overview of related products and manuals, please visit and bookmark our home page, www.roche-applied-science.com, and our Special Interest Sites for:

- Real-time PCR Systems (LightCycler[®] 2.0 System, LightCycler[®] 480 System, and Universal ProbeLibrary): http://www.roche-applied-science.com/sis/rtpcr/
- Automated Sample Preparation (MagNA Lyser Instrument, MagNA Pure Compact System, and MagNA Pure LC System): http://www.magnapure.com
- Real-Time qPCR Assays with prevalidated UPL-probes: http://www.universalprobelibrary.com

	Product	Pack Size	Cat. No.
Instruments	LightCycler [®] 480 Instrument II, 96-well	1 instrument with control unit and accessories	05 015 278 001
	LightCycler [®] 480 Instrument II, 384-well	1 instrument with control unit and accessories	05 015 243 001
Software	LightCycler [®] 480 Software, Version 1.5	1 software package	04 994 884 001

	Product	Pack Size	Cat. No.
	LightCycler [®] 480 LIMS Interface Module	1 software package	05 066 310 001
	LightCycler [®] 480 Gene Scanning Soft- ware	1 software package	05 103 908 001
	LightCycler [®] 480 Multiple Plate Analysis Software	1 software package	05 075 122 001
Accessories	LightCycler [®] 480 Thermal Block Cycler Unit (96-well) Silver	96-well thermal block cycler unit, including block cycler cover, storage box and loading device	05 015 219 001
	LightCycler [®] 480 Thermal Block Cycler Unit (384-well) Silver	384-well thermal block cycler unit, including block cycler cover, storage box and loading device	05 015 197 001
	LightCycler [®] 480 Multiwell Plate 96	50 plates with 50 sealing foils	04 729 692 001
	LightCycler [®] 480 Multiwell Plate 384	50 plates with 50 sealing foils	04 729 749 001
	LightCycler [®] 480 Multiwell Plate 96, clear	50 plates with 50 sealing foils	05 102 413 001
	LightCycler [®] 480 Multiwell Plate 384, clear	50 plates with 50 sealing foils	05 102 430 001
	LightCycler [®] 480 Sealing Foil	1×50 foils	04 729 757 001
	LightCycler [®] 480 Sealing Foil Applicator		04 706 170 001
PCR Reagents	LightCycler [®] 480 SYBR Green I Master	5 × 1 ml (5 × 100 reac- tions, 20 μ l each) 10 × 5 ml (10 × 500 reac- tions, 20 μ l each)	04 707 516 001 04 887 352 001
	LightCycler [®] 480 High Resolution Melting Master	1 kit (5 \times 100 reactions, 20 μ l each)	04 909 631 001
	LightCycler [®] 480 Probes Master	1 kit (5 \times 100 reactions, 20 μ l each)	04 707 494 001
		1 kit (10 × 500 reactions, 20 μl each) 1 kit (1 × 5,000 reactions, 20 μl each)	04887 301 001 04 902 343 001
	LightCycler [®] 480 Genotyping Master	1 kit (384 reactions, 20 μl each)	04 707 524 001
	LightCycler [®] RNA Master Hydrolysis Probe	1 kit (5 × 100 reactions)	04 991 885 001
Universal ProbeLibrary	Universal ProbeLibrary Set, Human	Library of 90 pre-validated detection probes	04 683 633 001
	Universal ProbeLibrary Set, Mouse	Library of 90 pre-validated detection probes	04 683 641 001
	Universal ProbeLibrary Set, Rat	Library of 90 pre-validated detection probes	04 683 650 001
	Universal ProbeLibrary Extension Set	Library of 75 pre-validated detection probes (probes #91 to #165)	04 869 877 001

Cat. No.
03 539 806 001
ons) 03 261 883 001
03 531 317 001 03 531 295 001 03 531 287 001
04 379 012 001
11 483 188 001

6.4 Disclaimer of License

NOTICE TO PURCHASER

A license to perform the patented 5' Nuclease Process for research is obtained by the purchase of (i) both Licensed Probe and Authorized 5' Nuclease Core Kit, (ii) a Licensed 5' Nuclease Kit, or (iii) license rights from Applied Biosystems. This product contains Licensed Probe. Its purchase price includes a limited, non-transferable immunity from suit under U.S. Patents Nos. 6,214,979 (exp. 8/6/2010) and 5,804,375 (claims 1-12 only, (exp. 9/8/2015) and corresponding patent claims outside the United States. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. The right to use this product in the 5' Nuclease Process under the applicable claims of US Patents Nos. 5,210,015 (exp. 8/6/2010) and corresponding patent claims outside the United States, can be obtained through purchase of an Authorized 5' Nuclease Core Kit. Except under separate license rights available from Applied Biosystems, no right under any other patent claim, or to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, or to sublicense, repackage with other products, or resell in any form, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained from the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

This product is covered in-part by US 5,871,908 (exp. 12/16/2014) or any foreign equivalents, co-exclusively licensed from Evotec OAI AG. The purchase price includes a license to practice the methods covered by US 5,871,908 (exp. 12/16/2014) by using the product. Purchase of this product, however, does not convey to the purchase a license or right to (i) commercially make, have made or sell reagents and/or kits, or (ii) buy or use reagents and/or kits provided by a third party used in conjunction with the product or any other thermocycler to practice the methods covered by US 5,871,908 (exp. 12/16/2014) or any foreign equivalents.

Parts of the Software used for the LightCycler® 480 System are licensed from Idaho Technology Inc., Salt Lake City, UT, USA. This product is covered by one or more of U.S. 6,197,520 (exp. 8/13/2019), 6,303,305 (exp. 3/30/2019), 6,387,621 (exp. 9/8/2019), 6,503,720 (exp. 2/20/2021), 6,730,501 (exp. 3/13/2022) and corresponding claims in their non-U.S. counterparts, owned by Roche Diagnostics GmbH and/or licensed from Idaho Technology Inc., Salt Lake Distribution of the context of th

6.5 Trademarks

LIGHTCYCLER, LC, FASTSTART, HYBPROBE, SIMPLEPROBE, MAGNA PURE, and HIGH PURE are trademarks of Roche.

SYBR is a registered trademark of Molecular Probes, Inc.

Exiqon, ProbeFinder, ProbeLibrary are registered trademarks of Exiqon A/S, Vedbaek, Denmark

6.6 Regulatory Disclaimer

For general laboratory use. Not for use in diagnostic procedures.

Contact and Support	If you have questions or experience problems with this or any Roche Applied Science (RAS) product, please contact our Technical Support staff. Our scientists commit themselves to providing rapid and effective help. We also want you to contact us if you have suggestions for enhancing RAS product performance or using our products in new or specialized ways. Such customer information has repeatedly proven invaluable to RAS and the world- wide research community.
	To ask questions, solve problems, suggest enhancements or report new appli- cations, please visit our Online Technical Support Site at:
	www.roche-applied-science.com/support
	To call, write, fax, or email us, visit the Roche Applied Science home page, www.roche-applied-science.com, and select your home country. Country-specific contact information will be displayed. On the Roche Applied Science home page select Printed Materials to find: • in-depth Technical Manuals • Lab FAQS: Protocols and references for life science research • our quarterly Biochemica Newsletter • Material Safety Data Sheets • Pack Inserts and Product Instructions or to request hard copies of printed materials.

Roche Diagnostics GmbH Roche Applied Science 68298 Mannheim Germany